mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
🚨🚨🚨 [NLLB Tokenizer]
Fix the prefix tokens 🚨🚨🚨 (#22313)
* fix the prefix tokens * update fast and test values * add legacy behaviour Co-authored-by: sgugger <sylvain.gugger@gmail.com> * update disclaimer, linkissue PR and behaviral changes * Apply suggestions from code review Co-authored-by: Lysandre Debut <hi@lysand.re> * styling * make a quote * quote this time --------- Co-authored-by: sgugger <sylvain.gugger@gmail.com> Co-authored-by: Lysandre Debut <hi@lysand.re>
This commit is contained in:
parent
ad5e9b6c6a
commit
00b5887b94
@ -12,8 +12,45 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# NLLB
|
||||
|
||||
**DISCLAIMER:** If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=bug&template=bug-report.yml) and assign
|
||||
@LysandreJik
|
||||
**DISCLAIMER:** The default behaviour for the tokenizer has recently been fixed (and thus changed)!
|
||||
|
||||
The previous version adds `[self.eos_token_id, self.cur_lang_code]` at the end of the token sequence for both target and source tokenization. This is wrong as the NLLB paper mentions (page 48, 6.1.1. Model Architecture) :
|
||||
|
||||
*Note that we prefix the source sequence with the source language, as opposed to the target
|
||||
language as previously done in several works (Arivazhagan et al., 2019; Johnson et al.,
|
||||
2017). This is primarily because we prioritize optimizing zero-shot performance of our
|
||||
model on any pair of 200 languages at a minor cost to supervised performance.*
|
||||
|
||||
Previous behaviour:
|
||||
|
||||
```python
|
||||
>>> from transformers import NllbTokenizer
|
||||
|
||||
>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
||||
>>> tokenizer("How was your day?").input_ids
|
||||
[13374, 1398, 4260, 4039, 248130, 2, 256047]
|
||||
|
||||
>>> # 2: '</s>'
|
||||
>>> # 256047 : 'eng_Latn'
|
||||
```
|
||||
New behaviour
|
||||
|
||||
```python
|
||||
>>> from transformers import NllbTokenizer
|
||||
|
||||
>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
||||
>>> tokenizer("How was your day?").input_ids
|
||||
[256047, 13374, 1398, 4260, 4039, 248130, 2]
|
||||
```
|
||||
|
||||
Enabling the old behaviour can be done as follows:
|
||||
```python
|
||||
>>> from transformers import NllbTokenizer
|
||||
|
||||
>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", legacy_behaviour=True)
|
||||
```
|
||||
|
||||
For more details, feel free to check the linked [PR](https://github.com/huggingface/transformers/pull/22313) and [Issue](https://github.com/huggingface/transformers/issues/19943).
|
||||
|
||||
## Overview of NLLB
|
||||
|
||||
|
@ -140,12 +140,14 @@ class NllbTokenizer(PreTrainedTokenizer):
|
||||
tgt_lang=None,
|
||||
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
additional_special_tokens=None,
|
||||
legacy_behaviour=False,
|
||||
**kwargs,
|
||||
):
|
||||
# Mask token behave like a normal word, i.e. include the space before it
|
||||
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
||||
|
||||
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
||||
self.legacy_behaviour = legacy_behaviour
|
||||
|
||||
super().__init__(
|
||||
bos_token=bos_token,
|
||||
@ -160,13 +162,13 @@ class NllbTokenizer(PreTrainedTokenizer):
|
||||
tgt_lang=tgt_lang,
|
||||
additional_special_tokens=additional_special_tokens,
|
||||
sp_model_kwargs=self.sp_model_kwargs,
|
||||
legacy_behaviour=legacy_behaviour,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||||
self.sp_model.Load(str(vocab_file))
|
||||
self.vocab_file = vocab_file
|
||||
|
||||
# Original fairseq vocab and spm vocab must be "aligned":
|
||||
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
||||
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
|
||||
@ -388,13 +390,27 @@ class NllbTokenizer(PreTrainedTokenizer):
|
||||
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
||||
|
||||
def set_src_lang_special_tokens(self, src_lang) -> None:
|
||||
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code]."""
|
||||
"""Reset the special tokens to the source lang setting.
|
||||
- In legacy mode: No prefix and suffix=[eos, src_lang_code].
|
||||
- In default mode: Prefix=[src_lang_code], suffix = [eos]
|
||||
"""
|
||||
self.cur_lang_code = self.lang_code_to_id[src_lang]
|
||||
self.prefix_tokens = []
|
||||
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
||||
if self.legacy_behaviour:
|
||||
self.prefix_tokens = []
|
||||
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
||||
else:
|
||||
self.prefix_tokens = [self.cur_lang_code]
|
||||
self.suffix_tokens = [self.eos_token_id]
|
||||
|
||||
def set_tgt_lang_special_tokens(self, lang: str) -> None:
|
||||
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
|
||||
"""Reset the special tokens to the target lang setting.
|
||||
- In legacy mode: No prefix and suffix=[eos, tgt_lang_code].
|
||||
- In default mode: Prefix=[tgt_lang_code], suffix = [eos]
|
||||
"""
|
||||
self.cur_lang_code = self.lang_code_to_id[lang]
|
||||
self.prefix_tokens = []
|
||||
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
||||
if self.legacy_behaviour:
|
||||
self.prefix_tokens = []
|
||||
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
||||
else:
|
||||
self.prefix_tokens = [self.cur_lang_code]
|
||||
self.suffix_tokens = [self.eos_token_id]
|
||||
|
@ -151,11 +151,12 @@ class NllbTokenizerFast(PreTrainedTokenizerFast):
|
||||
src_lang=None,
|
||||
tgt_lang=None,
|
||||
additional_special_tokens=None,
|
||||
legacy_behaviour=False,
|
||||
**kwargs,
|
||||
):
|
||||
# Mask token behave like a normal word, i.e. include the space before it
|
||||
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
||||
|
||||
self.legacy_behaviour = legacy_behaviour
|
||||
super().__init__(
|
||||
vocab_file=vocab_file,
|
||||
tokenizer_file=tokenizer_file,
|
||||
@ -169,6 +170,7 @@ class NllbTokenizerFast(PreTrainedTokenizerFast):
|
||||
src_lang=src_lang,
|
||||
tgt_lang=tgt_lang,
|
||||
additional_special_tokens=additional_special_tokens,
|
||||
legacy_behaviour=legacy_behaviour,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@ -287,10 +289,18 @@ class NllbTokenizerFast(PreTrainedTokenizerFast):
|
||||
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
||||
|
||||
def set_src_lang_special_tokens(self, src_lang) -> None:
|
||||
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code]."""
|
||||
"""Reset the special tokens to the source lang setting.
|
||||
- In legacy mode: No prefix and suffix=[eos, src_lang_code].
|
||||
- In default mode: Prefix=[src_lang_code], suffix = [eos]
|
||||
"""
|
||||
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
|
||||
self.prefix_tokens = []
|
||||
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
||||
|
||||
if self.legacy_behaviour:
|
||||
self.prefix_tokens = []
|
||||
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
||||
else:
|
||||
self.prefix_tokens = [self.cur_lang_code]
|
||||
self.suffix_tokens = [self.eos_token_id]
|
||||
|
||||
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
||||
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
||||
@ -302,10 +312,17 @@ class NllbTokenizerFast(PreTrainedTokenizerFast):
|
||||
)
|
||||
|
||||
def set_tgt_lang_special_tokens(self, lang: str) -> None:
|
||||
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
|
||||
"""Reset the special tokens to the target lang setting.
|
||||
- In legacy mode: No prefix and suffix=[eos, tgt_lang_code].
|
||||
- In default mode: Prefix=[tgt_lang_code], suffix = [eos]
|
||||
"""
|
||||
self.cur_lang_code = self.convert_tokens_to_ids(lang)
|
||||
self.prefix_tokens = []
|
||||
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
||||
if self.legacy_behaviour:
|
||||
self.prefix_tokens = []
|
||||
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
||||
else:
|
||||
self.prefix_tokens = [self.cur_lang_code]
|
||||
self.suffix_tokens = [self.eos_token_id]
|
||||
|
||||
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
||||
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
||||
|
@ -305,6 +305,7 @@ class NllbDistilledIntegrationTest(unittest.TestCase):
|
||||
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
|
||||
]
|
||||
expected_src_tokens = [
|
||||
256047,
|
||||
16297,
|
||||
134408,
|
||||
8165,
|
||||
@ -319,7 +320,6 @@ class NllbDistilledIntegrationTest(unittest.TestCase):
|
||||
108,
|
||||
49486,
|
||||
2,
|
||||
256047,
|
||||
]
|
||||
|
||||
@classmethod
|
||||
@ -355,8 +355,8 @@ class NllbDistilledIntegrationTest(unittest.TestCase):
|
||||
assert isinstance(src_text[0], str)
|
||||
desired_max_length = 10
|
||||
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
|
||||
self.assertEqual(ids[-2], 2)
|
||||
self.assertEqual(ids[-1], EN_CODE)
|
||||
self.assertEqual(ids[-1], 2)
|
||||
self.assertEqual(ids[0], EN_CODE)
|
||||
self.assertEqual(len(ids), desired_max_length)
|
||||
|
||||
def test_mask_token(self):
|
||||
@ -389,10 +389,10 @@ class NllbDistilledIntegrationTest(unittest.TestCase):
|
||||
self.assertEqual((2, 15), batch.attention_mask.shape)
|
||||
result = batch.input_ids.tolist()[0]
|
||||
self.assertListEqual(self.expected_src_tokens, result)
|
||||
self.assertEqual(2, batch.decoder_input_ids[0, -1]) # EOS
|
||||
self.assertEqual(RO_CODE, batch.decoder_input_ids[0, 0]) # EOS
|
||||
# Test that special tokens are reset
|
||||
self.assertEqual(self.tokenizer.prefix_tokens, [])
|
||||
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE])
|
||||
self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE])
|
||||
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
|
||||
|
||||
def test_seq2seq_max_length(self):
|
||||
batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
|
||||
@ -419,9 +419,27 @@ class NllbDistilledIntegrationTest(unittest.TestCase):
|
||||
nested_simplify(inputs),
|
||||
{
|
||||
# A, test, EOS, en_XX
|
||||
"input_ids": [[70, 7356, 2, 256047]],
|
||||
"input_ids": [[256047, 70, 7356, 2]],
|
||||
"attention_mask": [[1, 1, 1, 1]],
|
||||
# ar_AR
|
||||
"forced_bos_token_id": 256057,
|
||||
},
|
||||
)
|
||||
|
||||
@require_torch
|
||||
def test_legacy_behaviour(self):
|
||||
self.tokenizer.legacy_behaviour = True
|
||||
inputs = self.tokenizer(
|
||||
"UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn"
|
||||
)
|
||||
self.assertEqual(
|
||||
inputs.input_ids, [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047]
|
||||
)
|
||||
|
||||
self.tokenizer.legacy_behaviour = False
|
||||
inputs = self.tokenizer(
|
||||
"UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn"
|
||||
)
|
||||
self.assertEqual(
|
||||
inputs.input_ids, [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2]
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user