* Set generator in dataloader
* Use generator in all random samplers
* Checkpoint all RNG states
* Final version
* Quality
* Test
* Address review comments
* Quality
* Remove debug util
* Add python and numpy RNGs
* Split states in different files in distributed
* Quality
* local_rank for TPUs
* Only use generator when accepted
* Add test
* Set seed to avoid flakiness
* Make test less flaky
* Quality
* add electra model to flax
* Remove Electra Next Sentence Prediction model added by mistake
* fix parameter sharing and loosen equality threshold
* fix styling issues
* add mistaken removen imports
* fix electra table
* Add FlaxElectra to automodels and fixe docs
* fix issues pointed out the PR
* fix flax electra to comply with latest changes
* remove stale class
* add copied from
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add flax roberta
* make style
* correct initialiazation
* modify model to save weights
* fix copied from
* fix copied from
* correct some more code
* add more roberta models
* Apply suggestions from code review
* merge from master
* finish
* finish docs
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
* Make quality scripts work when one backend is missing.
* Check env variable is properly set
* Add default
* With print statements
* Fix typo
* Set env variable
* Remove debug code
* Rebase with master
* Minor bug fix in docs
* Copy files from adding_luke_v2 and improve docs
* change the default value of use_entity_aware_attention to True
* remove word_hidden_states
* fix head models
* fix tests
* fix the conversion script
* add integration tests for the pretrained large model
* improve docstring
* Improve docs, make style
* fix _init_weights for pytorch 1.8
* improve docs
* fix tokenizer to construct entity sequence with [MASK] entity when entities=None
* Make fix-copies
* Make style & quality
* Bug fixes
* Add LukeTokenizer to init
* Address most comments by @patil-suraj and @LysandreJik
* rename _compute_extended_attention_mask to get_extended_attention_mask
* add comments to LukeSelfAttention
* fix the documentation of the tokenizer
* address comments by @patil-suraj, @LysandreJik, and @sgugger
* improve docs
* Make style, quality and fix-copies
* Improve docs
* fix docs
* add "entity_span_classification" task
* update example code for LukeForEntitySpanClassification
* improve docs
* improve docs
* improve the code example in luke.rst
* rename the classification layer in LukeForEntityClassification from typing to classifier
* add bias to the classifier in LukeForEntitySpanClassification
* update docs to use fine-tuned hub models in code examples of the head models
* update the example sentences
* Make style & quality
* Add require_torch to tokenizer tests
* Add require_torch to tokenizer tests
* Address comments by @sgugger and add community notebooks
* Make fix-copies
Co-authored-by: Ikuya Yamada <ikuya@ikuya.net>
* prep for deepspeed==0.3.16
* new version
* too soon
* support and test fp32 mode
* troubleshooting doc start
* workaround no longer needed
* add fp32 doc
* style
* cleanup, add tf32 note
* clarify
* release was made
* Adding `AutomaticSpeechRecognitionPipeline`.
- Because we added everything to enable this pipeline, we probably
should add it to `transformers`.
- This PR tries to limit the scope and focuses only on the pipeline part
(what should go in, and out).
- The tests are very specific for S2T and Wav2vec2 to make sure both
architectures are supported by the pipeline. We don't use the mixin for
tests right now, because that requires more work in the `pipeline`
function (will be done in a follow up PR).
- Unsure about the "helper" function `ffmpeg_read`. It makes a lot of
sense from a user perspective, it does not add any additional
dependencies (as in hard dependency, because users can always use their
own load mechanism). Meanwhile, it feels slightly clunky to have so much
optional preprocessing.
- The pipeline is not done to support streaming audio right now.
Future work:
- Add `automatic-speech-recognition` as a `task`. And add the
FeatureExtractor.from_pretrained within `pipeline` function.
- Add small models within tests
- Add the Mixin to tests.
- Make the logic between ForCTC vs ForConditionalGeneration better.
* Update tests/test_pipelines_automatic_speech_recognition.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Adding docs + main import + type checking + LICENSE.
* Doc style !.
* Fixing TYPE_HINT.
* Specifying waveform shape in the docs.
* Adding asserts + specify in the documentation the shape of the input
np.ndarray.
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Adding require to tests + move the `feature_extractor` doc.
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Implement gradient checkpoinging for T5Stack
* A bit more robust type checking
* Add `gradient_checkpointing` to T5Config
* Formatting
* Set requires_grad only when training
* None return value will only cause problems when training
* Change the output tuple according to `use_cache`
* Enable gradient checkpointing for the decoder
Squashed commit of the following:
commit 658bdd0bd1215353a8770f558bda2ea69a0ad0c7
Author: Ceshine Lee <shuanck@gmail.com>
Date: Sat Apr 24 14:08:17 2021 +0800
Only set `require_grad` for gradient checkpointing
commit acaeee6b2e675045fb28ce2176444c1d63e908bd
Author: Ceshine Lee <shuanck@gmail.com>
Date: Sat Apr 24 13:59:35 2021 +0800
Make gradient checkpointing work with the decoder
* Formatting