mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Pytorch - Lazy initialization of models (#11471)
* lazy_init_weights * remove ipdb * save int * add necessary code * remove unnecessary utils * Update src/transformers/models/t5/modeling_t5.py * clean * add tests * correct * finish tests * finish tests * fix some more tests * fix xlnet & transfo-xl * fix more tests * make sure tests are independent * fix tests more * finist tests * final touches * Update src/transformers/modeling_utils.py * Apply suggestions from code review * Update src/transformers/modeling_utils.py Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> * Update src/transformers/modeling_utils.py Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> * clean tests * give arg positive name * add more mock weights to xlnet Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
This commit is contained in:
parent
8fa8e19429
commit
3e3e41ae20
@ -195,6 +195,7 @@ class ExamplesTests(TestCasePlus):
|
||||
--per_device_train_batch_size=2
|
||||
--per_device_eval_batch_size=2
|
||||
--num_train_epochs={epochs}
|
||||
--seed 7
|
||||
""".split()
|
||||
|
||||
if torch_device != "cuda":
|
||||
|
309
src/transformers/modeling_utils.py
Executable file → Normal file
309
src/transformers/modeling_utils.py
Executable file → Normal file
@ -18,6 +18,7 @@ import inspect
|
||||
import os
|
||||
import re
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
@ -50,6 +51,26 @@ from .utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
_init_weights = True
|
||||
|
||||
|
||||
@contextmanager
|
||||
def no_init_weights(_enable=True):
|
||||
"""
|
||||
Context manager to globally disable weight initialization to speed up loading large models.
|
||||
|
||||
TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
|
||||
"""
|
||||
global _init_weights
|
||||
if _enable:
|
||||
_init_weights = False
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
_init_weights = True
|
||||
|
||||
|
||||
try:
|
||||
from torch.nn import Identity
|
||||
except ImportError:
|
||||
@ -768,17 +789,19 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
|
||||
def init_weights(self):
|
||||
"""
|
||||
Initializes and prunes weights if needed.
|
||||
If needed prunes and maybe initializes weights.
|
||||
"""
|
||||
# Initialize weights
|
||||
self.apply(self._init_weights)
|
||||
|
||||
# Prune heads if needed
|
||||
if self.config.pruned_heads:
|
||||
self.prune_heads(self.config.pruned_heads)
|
||||
|
||||
# Tie weights if needed
|
||||
self.tie_weights()
|
||||
if _init_weights:
|
||||
# Initialize weights
|
||||
self.apply(self._init_weights)
|
||||
|
||||
# Tie weights should be skipped when not initializing all weights
|
||||
# since from_pretrained(...) calls tie weights anyways
|
||||
self.tie_weights()
|
||||
|
||||
def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
|
||||
"""
|
||||
@ -956,6 +979,16 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
||||
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
||||
Please refer to the mirror site for more information.
|
||||
_fast_init(:obj:`bool`, `optional`, defaults to `:obj:`True`):
|
||||
Whether or not to disable fast initialization.
|
||||
|
||||
.. warning::
|
||||
|
||||
One should only disable `_fast_init` to ensure backwards compatibility with
|
||||
``transformers.__version__ < 4.6.0`` for seeded model initialization. This argument will be removed
|
||||
at the next major version. See `pull request 11471
|
||||
<https://github.com/huggingface/transformers/pull/11471>`__ for more information.
|
||||
|
||||
kwargs (remaining dictionary of keyword arguments, `optional`):
|
||||
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
||||
:obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
|
||||
@ -1012,6 +1045,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
mirror = kwargs.pop("mirror", None)
|
||||
from_pipeline = kwargs.pop("_from_pipeline", None)
|
||||
from_auto_class = kwargs.pop("_from_auto", False)
|
||||
_fast_init = kwargs.pop("_fast_init", True)
|
||||
|
||||
user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
|
||||
if from_pipeline is not None:
|
||||
@ -1119,7 +1153,6 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
config.name_or_path = pretrained_model_name_or_path
|
||||
|
||||
# Instantiate model.
|
||||
|
||||
if is_deepspeed_zero3_enabled():
|
||||
import deepspeed
|
||||
|
||||
@ -1127,23 +1160,11 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
# this immediately partitions the model across all gpus, to avoid the overhead in time
|
||||
# and memory copying it on CPU or each GPU first
|
||||
with deepspeed.zero.Init(config=deepspeed_config()):
|
||||
model = cls(config, *model_args, **model_kwargs)
|
||||
with no_init_weights(_enable=_fast_init):
|
||||
model = cls(config, *model_args, **model_kwargs)
|
||||
else:
|
||||
model = cls(config, *model_args, **model_kwargs)
|
||||
|
||||
if state_dict is None and not (from_tf or from_flax):
|
||||
try:
|
||||
state_dict = torch.load(resolved_archive_file, map_location="cpu")
|
||||
except Exception:
|
||||
raise OSError(
|
||||
f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
|
||||
f"at '{resolved_archive_file}'"
|
||||
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
|
||||
)
|
||||
|
||||
missing_keys = []
|
||||
unexpected_keys = []
|
||||
error_msgs = []
|
||||
with no_init_weights(_enable=_fast_init):
|
||||
model = cls(config, *model_args, **model_kwargs)
|
||||
|
||||
if from_tf:
|
||||
if resolved_archive_file.endswith(".index"):
|
||||
@ -1173,102 +1194,20 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
)
|
||||
raise
|
||||
else:
|
||||
# Convert old format to new format if needed from a PyTorch state_dict
|
||||
old_keys = []
|
||||
new_keys = []
|
||||
for key in state_dict.keys():
|
||||
new_key = None
|
||||
if "gamma" in key:
|
||||
new_key = key.replace("gamma", "weight")
|
||||
if "beta" in key:
|
||||
new_key = key.replace("beta", "bias")
|
||||
if new_key:
|
||||
old_keys.append(key)
|
||||
new_keys.append(new_key)
|
||||
for old_key, new_key in zip(old_keys, new_keys):
|
||||
state_dict[new_key] = state_dict.pop(old_key)
|
||||
if state_dict is None:
|
||||
try:
|
||||
state_dict = torch.load(resolved_archive_file, map_location="cpu")
|
||||
except Exception:
|
||||
raise OSError(
|
||||
f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
|
||||
f"at '{resolved_archive_file}'"
|
||||
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
|
||||
)
|
||||
|
||||
# copy state_dict so _load_from_state_dict can modify it
|
||||
metadata = getattr(state_dict, "_metadata", None)
|
||||
state_dict = state_dict.copy()
|
||||
if metadata is not None:
|
||||
state_dict._metadata = metadata
|
||||
model, missing_keys, unexpected_keys, error_msgs = cls._load_state_dict_into_model(
|
||||
model, state_dict, pretrained_model_name_or_path
|
||||
)
|
||||
|
||||
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
|
||||
# so we need to apply the function recursively.
|
||||
def load(module: nn.Module, prefix=""):
|
||||
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
||||
args = (state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
|
||||
if is_deepspeed_zero3_enabled():
|
||||
import deepspeed
|
||||
|
||||
# because zero3 puts placeholders in model params, this context
|
||||
# manager gathers (unpartitions) the params of the current layer, then loads from
|
||||
# the state dict and then re-partitions them again
|
||||
with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
|
||||
if torch.distributed.get_rank() == 0:
|
||||
module._load_from_state_dict(*args)
|
||||
else:
|
||||
module._load_from_state_dict(*args)
|
||||
|
||||
for name, child in module._modules.items():
|
||||
if child is not None:
|
||||
load(child, prefix + name + ".")
|
||||
|
||||
# Make sure we are able to load base models as well as derived models (with heads)
|
||||
start_prefix = ""
|
||||
model_to_load = model
|
||||
has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys())
|
||||
if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
|
||||
start_prefix = cls.base_model_prefix + "."
|
||||
if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
|
||||
model_to_load = getattr(model, cls.base_model_prefix)
|
||||
|
||||
load(model_to_load, prefix=start_prefix)
|
||||
|
||||
if model.__class__.__name__ != model_to_load.__class__.__name__:
|
||||
base_model_state_dict = model_to_load.state_dict().keys()
|
||||
head_model_state_dict_without_base_prefix = [
|
||||
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
|
||||
]
|
||||
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
|
||||
|
||||
# Some models may have keys that are not in the state by design, removing them before needlessly warning
|
||||
# the user.
|
||||
if cls._keys_to_ignore_on_load_missing is not None:
|
||||
for pat in cls._keys_to_ignore_on_load_missing:
|
||||
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
|
||||
|
||||
if cls._keys_to_ignore_on_load_unexpected is not None:
|
||||
for pat in cls._keys_to_ignore_on_load_unexpected:
|
||||
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
|
||||
|
||||
if len(unexpected_keys) > 0:
|
||||
logger.warning(
|
||||
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
|
||||
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
|
||||
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
|
||||
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
|
||||
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
|
||||
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
|
||||
)
|
||||
else:
|
||||
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
||||
if len(missing_keys) > 0:
|
||||
logger.warning(
|
||||
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
|
||||
f"and are newly initialized: {missing_keys}\n"
|
||||
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
|
||||
f"If your task is similar to the task the model of the checkpoint was trained on, "
|
||||
f"you can already use {model.__class__.__name__} for predictions without further training."
|
||||
)
|
||||
if len(error_msgs) > 0:
|
||||
error_msg = "\n\t".join(error_msgs)
|
||||
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
||||
# make sure token embedding weights are still tied if needed
|
||||
model.tie_weights()
|
||||
|
||||
@ -1285,6 +1224,142 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
|
||||
return model
|
||||
|
||||
@classmethod
|
||||
def _load_state_dict_into_model(cls, model, state_dict, pretrained_model_name_or_path):
|
||||
|
||||
# Convert old format to new format if needed from a PyTorch state_dict
|
||||
old_keys = []
|
||||
new_keys = []
|
||||
for key in state_dict.keys():
|
||||
new_key = None
|
||||
if "gamma" in key:
|
||||
new_key = key.replace("gamma", "weight")
|
||||
if "beta" in key:
|
||||
new_key = key.replace("beta", "bias")
|
||||
if new_key:
|
||||
old_keys.append(key)
|
||||
new_keys.append(new_key)
|
||||
for old_key, new_key in zip(old_keys, new_keys):
|
||||
state_dict[new_key] = state_dict.pop(old_key)
|
||||
|
||||
# Retrieve missing & unexpected_keys
|
||||
expected_keys = list(model.state_dict().keys())
|
||||
loaded_keys = list(state_dict.keys())
|
||||
prefix = model.base_model_prefix
|
||||
|
||||
has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
|
||||
expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
|
||||
remove_prefix = not has_prefix_module and expects_prefix_module
|
||||
add_prefix = has_prefix_module and not expects_prefix_module
|
||||
|
||||
if remove_prefix:
|
||||
expected_keys = [".".join(s.split(".")[1:]) if s.startswith(prefix) else s for s in expected_keys]
|
||||
elif add_prefix:
|
||||
expected_keys = [".".join([prefix, s]) for s in expected_keys]
|
||||
|
||||
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
||||
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
||||
|
||||
# Some models may have keys that are not in the state by design, removing them before needlessly warning
|
||||
# the user.
|
||||
if cls._keys_to_ignore_on_load_missing is not None:
|
||||
for pat in cls._keys_to_ignore_on_load_missing:
|
||||
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
|
||||
|
||||
if cls._keys_to_ignore_on_load_unexpected is not None:
|
||||
for pat in cls._keys_to_ignore_on_load_unexpected:
|
||||
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
|
||||
|
||||
# tie unintialized modules
|
||||
unintialized_modules = model.retrieve_modules_from_names(
|
||||
missing_keys, add_prefix=add_prefix, remove_prefix=remove_prefix
|
||||
)
|
||||
for module in unintialized_modules:
|
||||
model._init_weights(module)
|
||||
# copy state_dict so _load_from_state_dict can modify it
|
||||
metadata = getattr(state_dict, "_metadata", None)
|
||||
state_dict = state_dict.copy()
|
||||
if metadata is not None:
|
||||
state_dict._metadata = metadata
|
||||
|
||||
error_msgs = []
|
||||
|
||||
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
|
||||
# so we need to apply the function recursively.
|
||||
def load(module: nn.Module, prefix=""):
|
||||
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
||||
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
|
||||
if is_deepspeed_zero3_enabled():
|
||||
import deepspeed
|
||||
|
||||
# because zero3 puts placeholders in model params, this context
|
||||
# manager gathers (unpartitions) the params of the current layer, then loads from
|
||||
# the state dict and then re-partitions them again
|
||||
with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
|
||||
if torch.distributed.get_rank() == 0:
|
||||
module._load_from_state_dict(*args)
|
||||
else:
|
||||
module._load_from_state_dict(*args)
|
||||
|
||||
for name, child in module._modules.items():
|
||||
if child is not None:
|
||||
load(child, prefix + name + ".")
|
||||
|
||||
# Make sure we are able to load base models as well as derived models (with heads)
|
||||
start_prefix = ""
|
||||
model_to_load = model
|
||||
if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
|
||||
start_prefix = cls.base_model_prefix + "."
|
||||
if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
|
||||
model_to_load = getattr(model, cls.base_model_prefix)
|
||||
|
||||
load(model_to_load, prefix=start_prefix)
|
||||
|
||||
if len(unexpected_keys) > 0:
|
||||
logger.warning(
|
||||
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
|
||||
f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
|
||||
f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
|
||||
f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
|
||||
f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
|
||||
f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
|
||||
)
|
||||
else:
|
||||
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
||||
if len(missing_keys) > 0:
|
||||
logger.warning(
|
||||
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
|
||||
f"and are newly initialized: {missing_keys}\n"
|
||||
f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
|
||||
f"If your task is similar to the task the model of the checkpoint was trained on, "
|
||||
f"you can already use {model.__class__.__name__} for predictions without further training."
|
||||
)
|
||||
if len(error_msgs) > 0:
|
||||
error_msg = "\n\t".join(error_msgs)
|
||||
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
||||
|
||||
return model, missing_keys, unexpected_keys, error_msgs
|
||||
|
||||
def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
|
||||
module_keys = set([".".join(key.split(".")[:-1]) for key in names])
|
||||
|
||||
retrieved_modules = []
|
||||
# retrieve all modules that has at least one missing weight name
|
||||
for name, module in self.named_modules():
|
||||
if remove_prefix:
|
||||
name = ".".join(name.split(".")[1:]) if name.startswith(self.base_model_prefix) else name
|
||||
elif add_prefix:
|
||||
name = ".".join([self.base_model_prefix, name])
|
||||
|
||||
if name in module_keys:
|
||||
retrieved_modules.append(module)
|
||||
|
||||
return retrieved_modules
|
||||
|
||||
|
||||
class Conv1D(nn.Module):
|
||||
"""
|
||||
|
@ -177,6 +177,103 @@ class ModelTesterMixin:
|
||||
for k in _keys_to_ignore_on_save:
|
||||
self.assertNotIn(k, state_dict_saved)
|
||||
|
||||
def _mock_init_weights(self, module):
|
||||
if hasattr(module, "weight") and module.weight is not None:
|
||||
module.weight.data.fill_(3)
|
||||
if hasattr(module, "bias") and module.bias is not None:
|
||||
module.bias.data.fill_(3)
|
||||
|
||||
def test_save_load_fast_init_from_base(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
base_class = MODEL_MAPPING[config.__class__]
|
||||
|
||||
if isinstance(base_class, tuple):
|
||||
base_class = base_class[0]
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
if model_class == base_class:
|
||||
continue
|
||||
|
||||
# make a copy of model class to not break future tests
|
||||
# from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
|
||||
class CopyClass(model_class):
|
||||
pass
|
||||
|
||||
model_class_copy = CopyClass
|
||||
|
||||
# make sure that all keys are expected for test
|
||||
model_class_copy._keys_to_ignore_on_load_missing = []
|
||||
|
||||
# make init deterministic, but make sure that
|
||||
# non-initialized weights throw errors nevertheless
|
||||
model_class_copy._init_weights = self._mock_init_weights
|
||||
|
||||
model = base_class(config)
|
||||
state_dict = model.state_dict()
|
||||
|
||||
# this will often delete a single weight of a multi-weight module
|
||||
# to test an edge case
|
||||
random_key_to_del = random.choice(list(state_dict.keys()))
|
||||
del state_dict[random_key_to_del]
|
||||
|
||||
# check that certain keys didn't get saved with the model
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
model.save_pretrained(tmpdirname)
|
||||
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
|
||||
|
||||
model_fast_init = model_class_copy.from_pretrained(tmpdirname)
|
||||
model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
|
||||
|
||||
for key in model_fast_init.state_dict().keys():
|
||||
max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
|
||||
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
|
||||
|
||||
def test_save_load_fast_init_to_base(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
base_class = MODEL_MAPPING[config.__class__]
|
||||
|
||||
if isinstance(base_class, tuple):
|
||||
base_class = base_class[0]
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
|
||||
if model_class == base_class:
|
||||
continue
|
||||
|
||||
# make a copy of model class to not break future tests
|
||||
# from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
|
||||
class CopyClass(base_class):
|
||||
pass
|
||||
|
||||
base_class_copy = CopyClass
|
||||
|
||||
# make sure that all keys are expected for test
|
||||
base_class_copy._keys_to_ignore_on_load_missing = []
|
||||
|
||||
# make init deterministic, but make sure that
|
||||
# non-initialized weights throw errors nevertheless
|
||||
base_class_copy._init_weights = self._mock_init_weights
|
||||
|
||||
model = model_class(config)
|
||||
state_dict = model.state_dict()
|
||||
|
||||
# this will often delete a single weight of a multi-weight module
|
||||
# to test an edge case
|
||||
random_key_to_del = random.choice(list(state_dict.keys()))
|
||||
del state_dict[random_key_to_del]
|
||||
|
||||
# check that certain keys didn't get saved with the model
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
model.config.save_pretrained(tmpdirname)
|
||||
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
|
||||
|
||||
model_fast_init = base_class_copy.from_pretrained(tmpdirname)
|
||||
model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)
|
||||
|
||||
for key in model_fast_init.state_dict().keys():
|
||||
max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
|
||||
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
|
||||
|
||||
def test_initialization(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
|
@ -400,6 +400,18 @@ class FunnelModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
|
||||
|
||||
# overwrite from test_modeling_common
|
||||
def _mock_init_weights(self, module):
|
||||
if hasattr(module, "weight") and module.weight is not None:
|
||||
module.weight.data.fill_(3)
|
||||
if hasattr(module, "bias") and module.bias is not None:
|
||||
module.bias.data.fill_(3)
|
||||
|
||||
for param in ["r_w_bias", "r_r_bias", "r_kernel", "r_s_bias", "seg_embed"]:
|
||||
if hasattr(module, param) and getattr(module, param) is not None:
|
||||
weight = getattr(module, param)
|
||||
weight.data.fill_(3)
|
||||
|
||||
|
||||
@require_torch
|
||||
class FunnelBaseModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
@ -443,6 +455,18 @@ class FunnelBaseModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
loss = model(**inputs).loss
|
||||
loss.backward()
|
||||
|
||||
# overwrite from test_modeling_common
|
||||
def _mock_init_weights(self, module):
|
||||
if hasattr(module, "weight") and module.weight is not None:
|
||||
module.weight.data.fill_(3)
|
||||
if hasattr(module, "bias") and module.bias is not None:
|
||||
module.bias.data.fill_(3)
|
||||
|
||||
for param in ["r_w_bias", "r_r_bias", "r_kernel", "r_s_bias", "seg_embed"]:
|
||||
if hasattr(module, param) and getattr(module, param) is not None:
|
||||
weight = getattr(module, param)
|
||||
weight.data.fill_(3)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_sentencepiece
|
||||
|
@ -348,6 +348,31 @@ class TransfoXLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestC
|
||||
[expected_shape] * len(iter_hidden_states),
|
||||
)
|
||||
|
||||
# overwrite from test_modeling_common
|
||||
def _mock_init_weights(self, module):
|
||||
if hasattr(module, "weight") and module.weight is not None:
|
||||
module.weight.data.fill_(3)
|
||||
if hasattr(module, "cluster_weight") and module.cluster_weight is not None:
|
||||
module.cluster_weight.data.fill_(3)
|
||||
if hasattr(module, "bias") and module.bias is not None:
|
||||
module.bias.data.fill_(3)
|
||||
if hasattr(module, "cluster_bias") and module.cluster_bias is not None:
|
||||
module.cluster_bias.data.fill_(3)
|
||||
|
||||
if hasattr(module, "emb_projs"):
|
||||
for i in range(len(module.emb_projs)):
|
||||
if module.emb_projs[i] is not None:
|
||||
torch.nn.init.constant_(module.emb_projs[i], 0.0003)
|
||||
if hasattr(module, "out_projs"):
|
||||
for i in range(len(module.out_projs)):
|
||||
if module.out_projs[i] is not None:
|
||||
torch.nn.init.constant_(module.out_projs[i], 0.0003)
|
||||
|
||||
for param in ["r_emb", "r_w_bias", "r_r_bias", "r_bias"]:
|
||||
if hasattr(module, param) and getattr(module, param) is not None:
|
||||
weight = getattr(module, param)
|
||||
weight.data.fill_(3)
|
||||
|
||||
|
||||
@require_torch
|
||||
class TransfoXLModelLanguageGenerationTest(unittest.TestCase):
|
||||
|
@ -329,6 +329,15 @@ class Wav2Vec2ModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
|
||||
# overwrite from test_modeling_common
|
||||
def _mock_init_weights(self, module):
|
||||
if hasattr(module, "weight") and module.weight is not None:
|
||||
module.weight.data.fill_(3)
|
||||
if hasattr(module, "weight_g") and module.weight is not None:
|
||||
module.weight_g.data.fill_(3)
|
||||
if hasattr(module, "bias") and module.bias is not None:
|
||||
module.bias.data.fill_(3)
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
@ -446,6 +455,15 @@ class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
|
||||
# overwrite from test_modeling_common
|
||||
def _mock_init_weights(self, module):
|
||||
if hasattr(module, "weight") and module.weight is not None:
|
||||
module.weight.data.fill_(3)
|
||||
if hasattr(module, "weight_g") and module.weight is not None:
|
||||
module.weight_g.data.fill_(3)
|
||||
if hasattr(module, "bias") and module.bias is not None:
|
||||
module.bias.data.fill_(3)
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
|
@ -594,6 +594,18 @@ class XLNetModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase)
|
||||
# xlnet cannot keep gradients in attentions or hidden states
|
||||
return
|
||||
|
||||
# overwrite from test_modeling_common
|
||||
def _mock_init_weights(self, module):
|
||||
if hasattr(module, "weight") and module.weight is not None:
|
||||
module.weight.data.fill_(3)
|
||||
if hasattr(module, "bias") and module.bias is not None:
|
||||
module.bias.data.fill_(3)
|
||||
|
||||
for param in ["q", "k", "v", "o", "r", "r_r_bias", "r_s_bias", "r_w_bias", "seg_embed", "mask_emb"]:
|
||||
if hasattr(module, param) and getattr(module, param) is not None:
|
||||
weight = getattr(module, param)
|
||||
weight.data.fill_(3)
|
||||
|
||||
def _check_hidden_states_for_generate(
|
||||
self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
|
||||
):
|
||||
|
Loading…
Reference in New Issue
Block a user