* minimal fixes to run DataCollatorForWholeWordMask with return_tensors="np" and return_tensors="tf"
* more consinstent implementation for numpy_mask_tokens
* Add cross attentions to TFGPT2Model
* change to is_pt_tf_cross_test
* A minor correction to a comment
* Remove n_ctx when creating self.crossattention
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* check test_configuration_tie
* Fix test_configuration_tie
* make test slow again
* Remove property and use model.module.bind
* revert to slow test
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add first draft
* Make forward pass work
* Improve conversion script
* Add notebook that checks if it works
* Add BeitForSemanticSegmentation to the tests
* More improvements
* Make BeitForSemanticSegmentation consistent with Segformer
* Small bug fix
* Add BeitForSemanticSegmentation to docs
* Make sure model doesn't output hidden states when the user doesn't want to
* Make it possible to convert the large model
* Fix issue
* Fix conversion script for large model
* Add auxiliary_head option to semantic segmentation model
* Apply suggestions from @sgugger's review
* Apply suggestions from code review
* Fix failing test
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
* Adding `handle_long_generation` paramters for `text-generation` pipeline.
* More error handling
* Fixing tests by dropping tf support on this functionality, it needs
`max_new_tokens` to make it possible to understand user's intent.
Otherwise, `max_length` == `tokenizer.model_max_length` <
input_ids.shape[0].
* Fixing doc ?
* Doc ?
* Remove link from doc.
* Catched an issue on roberta.
* Damn doc.
* Non BC proposal ?
* Cleaning the fix ?
* Finally using only a test override.
* Don't need to modify this.
* Bad print.
* Add the support for the fast (rust) implementation of BlenbderbotTokenizer
* Fix a converter and a typo in a doc
* Apply the patil-suraj's suggestion
* (Nitpick) Fast tokenization -> Fast Tokenization in doc
* Apply the SaulLu's suggestion
* Apply Narsil's suggestion to fix test pipelines
* Add encoder_no_repeat_ngram_size according to the Narsil's suggestion
* Revert the last (unnecessary) commit
* Override pipeline config for Blenderbot to allow for larger pos. emb.
* make fix-copies
* Remove n_ctx from configs
* Fix GPTJ and OpenAIGPT, both are acceptable breaking changes as there are no configs such that it breaks
* Remove unecessary n_positions from TFOpenAIGPT
* First draft
* Make style & quality
* Improve conversion script
* Add print statement to see actual slice
* Make absolute tolerance smaller
* Fix image classification models
* Add post_process_semantic method
* Disable padding
* Improve conversion script
* Rename to ForSemanticSegmentation, add integration test, remove post_process methods
* Improve docs
* Fix code quality
* Fix feature extractor tests
* Fix tests for image classification model
* Delete file
* Add is_torch_available to feature extractor
* Improve documentation of feature extractor methods
* Apply suggestions from @sgugger's code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply some more suggestions of code review
* Rebase with master
* Fix rebase issues
* Make sure model only outputs hidden states when the user wants to
* Apply suggestions from code review
* Add pad method
* Support padding of 2d images
* Add print statement
* Add print statement
* Move padding method to SegformerFeatureExtractor
* Fix issue
* Add casting of segmentation maps
* Add test for padding
* Add small note about padding
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* unispeech
* add copy from
* remove hubert copy from
* finish for today
* add unispeech-sat
* adapt more
* up
* up
* up
* up
* add modeling
* add tests
* up
* up
* finish
* up
* Apply suggestions from code review
* up
* up
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* up
* up
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* TF Model train and eval step metrics for seq2seq models.
When using a model with a seq2seq output compute metrics against logits.
* Removing vestigial code
Co-authored-by: matt <rocketknight1@gmail.com>
* Add API to register a new object in auto classes
* Fix test
* Documentation
* Add to tokenizers and test
* Add cleanup after tests
* Be more careful
* Move import
* Move import
* Cleanup in TF test too
* Add consistency check
* Add documentation
* Style
* Update docs/source/model_doc/auto.rst
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Update src/transformers/models/auto/auto_factory.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* First draft
* Update self-attention of RoBERTa as proposition
* Improve conversion script
* Add TrOCR decoder-only model
* More improvements
* Make forward pass with pretrained weights work
* More improvements
* Some more improvements
* More improvements
* Make conversion work
* Clean up print statements
* Add documentation, processor
* Add test files
* Small improvements
* Some more improvements
* Make fix-copies, improve docs
* Make all vision encoder decoder model tests pass
* Make conversion script support other models
* Update URL for OCR image
* Update conversion script
* Fix style & quality
* Add support for the large-printed model
* Fix some issues
* Add print statement for debugging
* Add print statements for debugging
* Make possible fix for sinusoidal embedding
* Further debugging
* Potential fix v2
* Add more print statements for debugging
* Add more print statements for debugging
* Deubg more
* Comment out print statements
* Make conversion of large printed model possible, address review comments
* Make it possible to convert the stage1 checkpoints
* Clean up code, apply suggestions from code review
* Apply suggestions from code review, use Microsoft models in tests
* Rename encoder_hidden_size to cross_attention_hidden_size
* Improve docs
* Add cross attentions to TFGPT2Model
* Add TFEncoderDecoderModel
* Add TFBaseModelOutputWithPoolingAndCrossAttentions
* Add cross attentions to TFBertModel
* Fix past or past_key_values argument issue
* Fix generation
* Fix save and load
* Add some checks and comments
* Clean the code that deals with past keys/values
* Add kwargs to processing_inputs
* Add serving_output to TFEncoderDecoderModel
* Some cleaning + fix use_cache value issue
* Fix tests + add bert2bert/bert2gpt2 tests
* Fix more tests
* Ignore crossattention.bias when loading GPT2 weights into TFGPT2
* Fix return_dict_in_generate in tf generation
* Fix is_token_logit_eos_token bug in tf generation
* Finalize the tests after fixing some bugs
* Fix another is_token_logit_eos_token bug in tf generation
* Add/Update docs
* Add TFBertEncoderDecoderModelTest
* Clean test script
* Add TFEncoderDecoderModel to the library
* Add cross attentions to TFRobertaModel
* Add TFRobertaEncoderDecoderModelTest
* make style
* Change the way of position_ids computation
* bug fix
* Fix copies in tf_albert
* Remove some copied from and apply some fix-copies
* Remove some copied
* Add cross attentions to some other TF models
* Remove encoder_hidden_states from TFLayoutLMModel.call for now
* Make style
* Fix TFRemBertForCausalLM
* Revert the change to longformer + Remove copies
* Revert the change to albert and convbert + Remove copies
* make quality
* make style
* Add TFRembertEncoderDecoderModelTest
* make quality and fix-copies
* test TFRobertaForCausalLM
* Fixes for failed tests
* Fixes for failed tests
* fix more tests
* Fixes for failed tests
* Fix Auto mapping order
* Fix TFRemBertEncoder return value
* fix tf_rembert
* Check copies are OK
* Fix missing TFBaseModelOutputWithPastAndCrossAttentions is not defined
* Add TFEncoderDecoderModelSaveLoadTests
* fix tf weight loading
* check the change of use_cache
* Revert the change
* Add missing test_for_causal_lm for TFRobertaModelTest
* Try cleaning past
* fix _reorder_cache
* Revert some files to original versions
* Keep as many copies as possible
* Apply suggested changes - Use raise ValueError instead of assert
* Move import to top
* Fix wrong require_torch
* Replace more assert by raise ValueError
* Add test_pt_tf_model_equivalence (the test won't pass for now)
* add test for loading/saving
* finish
* finish
* Remove test_pt_tf_model_equivalence
* Update tf modeling template
* Remove pooling, added in the prev. commit, from MainLayer
* Update tf modeling test template
* Move inputs["use_cache"] = False to modeling_tf_utils.py
* Fix torch.Tensor in the comment
* fix use_cache
* Fix missing use_cache in ElectraConfig
* Add a note to from_pretrained
* Fix style
* Change test_encoder_decoder_save_load_from_encoder_decoder_from_pt
* Fix TFMLP (in TFGPT2) activation issue
* Fix None past_key_values value in serving_output
* Don't call get_encoderdecoder_model in TFEncoderDecoderModelTest.test_configuration_tie until we have a TF checkpoint on Hub
* Apply review suggestions - style for cross_attns in serving_output
* Apply review suggestions - change assert + docstrings
* break the error message to respect the char limit
* deprecate the argument past
* fix docstring style
* Update the encoder-decoder rst file
* fix Unknown interpreted text role "method"
* fix typo
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* adapt wav2vec2
* add example
* add files
* adapt
* remove bogus file
* Apply suggestions from code review
* adapt files more
* upload changes
* del old files
* up
* up
* up
* up
* up
* correct gradient checkpoitning
* add readme
* finish
* finish
* up
* more fixes
* up
* up
* add demo run to readme
* up
* Tmp.
* Fixing BC for question answering with long context.
* Capping model_max_length to avoid tf overflow.
* Bad workaround bugged roberta.
* Fixing name.
* Symbolic trace dynamic axes support for BERT like models (albert, bert, distilbert, mobilebert, electra, megatron-bert)
* Sanity checks before tracing that make sure the model to trace is supported
* Adapted to PyTorch 1.9
Co-authored-by: Michael Benayoun <michael@huggingface.co>
* update no_* argument
Changes the order so that the no_* argument is created after the original argument AND sets the default for this no_* argument to False
* import copy
* update test
* make style
* Use kwargs to set default=False
* make style
* add sigopt hpo to transformers.
Signed-off-by: Ding, Ke <ke.ding@intel.com>
* extend sigopt changes to test code and others..
Signed-off-by: Ding, Ke <ke.ding@intel.com>
* Style.
* fix style for sigopt integration.
Signed-off-by: Ding, Ke <ke.ding@intel.com>
* Add necessary information to run unittests on SigOpt.
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
* Use fp16 checkpoints
* Style
* Fix outputs and disable OOM tests
* Correct another output
* Use a random smaller model for generation tests
* repo quickfix
* fix gradient checkpointing
* Make gradient_checkpointing a training argument
* Update src/transformers/modeling_utils.py
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Update src/transformers/configuration_utils.py
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Fix tests
* Style
* document Gradient Checkpointing as a performance feature
* Small rename
* PoC for not using the config
* Adapt BC to new PoC
* Forgot to save
* Rollout changes to all other models
* Fix typo
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
* Add support for exporting PyTorch LayoutLM to ONNX
* Added tests for converting LayoutLM to ONNX
* Add support for exporting PyTorch LayoutLM to ONNX
* Added tests for converting LayoutLM to ONNX
* cleanup
* Removed regression/ folder
* Add support for exporting PyTorch LayoutLM to ONNX
* Added tests for converting LayoutLM to ONNX
* cleanup
* Fixed import error
* Remove unnecessary import statements
* Changed max_2d_positions from class variable to instance variable of the config class
* Add support for exporting PyTorch LayoutLM to ONNX
* Added tests for converting LayoutLM to ONNX
* cleanup
* Add support for exporting PyTorch LayoutLM to ONNX
* cleanup
* Fixed import error
* Changed max_2d_positions from class variable to instance variable of the config class
* Use super class generate_dummy_inputs method
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* Add support for Masked LM, sequence classification and token classification
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* Removed uncessary import and method
* Fixed code styling
* Raise error if PyTorch is not installed
* Remove unnecessary import statement
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* beit-flax
* updated FLAX_BEIT_MLM_DOCSTRING
* removed bool_masked_pos from classification
* updated Copyright
* code refactoring: x -> embeddings
* updated test: rm from_pt
* Update docs/source/model_doc/beit.rst
* model code dtype updates and
other changes according to review
* relative_position_bias
revert back to pytorch design
* Init FNet
* Update config
* Fix config
* Update model classes
* Update tokenizers to use sentencepiece
* Fix errors in model
* Fix defaults in config
* Remove position embedding type completely
* Fix typo and take only real numbers
* Fix type vocab size in configuration
* Add projection layer to embeddings
* Fix position ids bug in embeddings
* Add minor changes
* Add conversion script and remove CausalLM vestiges
* Fix conversion script
* Fix conversion script
* Remove CausalLM Test
* Update checkpoint names to dummy checkpoints
* Add tokenizer mapping
* Fix modeling file and corresponding tests
* Add tokenization test file
* Add PreTraining model test
* Make style and quality
* Make tokenization base tests work
* Update docs
* Add FastTokenizer tests
* Fix fast tokenizer special tokens
* Fix style and quality
* Remove load_tf_weights vestiges
* Add FNet to main README
* Fix configuration example indentation
* Comment tokenization slow test
* Fix style
* Add changes from review
* Fix style
* Remove bos and eos tokens from tokenizers
* Add tokenizer slow test, TPU transforms, NSP
* Add scipy check
* Add scipy availabilty check to test
* Fix tokenizer and use correct inputs
* Remove remaining TODOs
* Fix tests
* Fix tests
* Comment Fourier Test
* Uncomment Fourier Test
* Change to google checkpoint
* Add changes from review
* Fix activation function
* Fix model integration test
* Add more integration tests
* Add comparison steps to MLM integration test
* Fix style
* Add masked tokenization fix
* Improve mask tokenization fix
* Fix index docs
* Add changes from review
* Fix issue
* Fix failing import in test
* some more fixes
* correct fast tokenizer
* finalize
* make style
* Remove additional tokenization logic
* Set do_lower_case to False
* Allow keeping accents
* Fix tokenization test
* Fix FNet Tokenizer Fast
* fix tests
* make style
* Add tips to FNet docs
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
* Fix special tokens not correctly tokenized
* Add testing
* Fix
* Fix
* Use user workflows instead of directly assigning variables
* Enable test of fast tokenizers
* Update test of canine tokenizer