mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
[Wav2Vec2FeatureExtractor] Fix extractor.pad()
dtype backwards compatibility (#13693)
* Force dtype, add tests * Local torch imports * Remove unused logic (always ndarray)
This commit is contained in:
parent
8e908c8c74
commit
75f6641eaf
@ -187,23 +187,6 @@ class SequenceFeatureExtractor(FeatureExtractionMixin):
|
||||
padding_strategy = self._get_padding_strategies(padding=padding, max_length=max_length)
|
||||
|
||||
required_input = processed_features[self.model_input_names[0]]
|
||||
if required_input and not isinstance(required_input[0], np.ndarray):
|
||||
# truncation
|
||||
processed_features = self._truncate(
|
||||
processed_features,
|
||||
max_length=max_length,
|
||||
pad_to_multiple_of=pad_to_multiple_of,
|
||||
truncation=truncation,
|
||||
)
|
||||
# padding
|
||||
processed_features = self._pad(
|
||||
processed_features,
|
||||
max_length=max_length,
|
||||
padding_strategy=padding_strategy,
|
||||
pad_to_multiple_of=pad_to_multiple_of,
|
||||
return_attention_mask=return_attention_mask,
|
||||
)
|
||||
return BatchFeature(processed_features, tensor_type=return_tensors)
|
||||
|
||||
batch_size = len(required_input)
|
||||
if not all(len(v) == batch_size for v in processed_features.values()):
|
||||
@ -240,6 +223,8 @@ class SequenceFeatureExtractor(FeatureExtractionMixin):
|
||||
for key, value in outputs.items():
|
||||
if key not in batch_outputs:
|
||||
batch_outputs[key] = []
|
||||
if value.dtype is np.dtype(np.float64):
|
||||
value = value.astype(np.float32)
|
||||
batch_outputs[key].append(value)
|
||||
|
||||
return BatchFeature(batch_outputs, tensor_type=return_tensors)
|
||||
|
@ -235,3 +235,16 @@ class Speech2TextFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unitt
|
||||
|
||||
# make sure that if max_length < longest -> then pad to max_length
|
||||
self.assertEqual(input_features.shape, (3, 6, 24))
|
||||
|
||||
def test_double_precision_pad(self):
|
||||
import torch
|
||||
|
||||
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
|
||||
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
|
||||
py_speech_inputs = np_speech_inputs.tolist()
|
||||
|
||||
for inputs in [py_speech_inputs, np_speech_inputs]:
|
||||
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
|
||||
self.assertTrue(np_processed.input_features.dtype == np.float32)
|
||||
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
|
||||
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
|
||||
|
@ -196,6 +196,20 @@ class Wav2Vec2FeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest
|
||||
# make sure that if max_length > longest -> then pad to longest
|
||||
self.assertTrue(input_values.shape == (3, 1200))
|
||||
|
||||
@require_torch
|
||||
def test_double_precision_pad(self):
|
||||
import torch
|
||||
|
||||
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
|
||||
np_speech_inputs = np.random.rand(100).astype(np.float64)
|
||||
py_speech_inputs = np_speech_inputs.tolist()
|
||||
|
||||
for inputs in [py_speech_inputs, np_speech_inputs]:
|
||||
np_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="np")
|
||||
self.assertTrue(np_processed.input_values.dtype == np.float32)
|
||||
pt_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="pt")
|
||||
self.assertTrue(pt_processed.input_values.dtype == torch.float32)
|
||||
|
||||
@slow
|
||||
@require_torch
|
||||
def test_pretrained_checkpoints_are_set_correctly(self):
|
||||
|
Loading…
Reference in New Issue
Block a user