Commit Graph

15 Commits

Author SHA1 Message Date
Julien Plu
fdb2351ebb
Making TF XLM-like models XLA and AMP compliant (#10211)
* Fix Flaubert and XLM

* Remove useless cast

* Tiny fix

* Tiny fix
2021-02-17 18:02:48 +01:00
Julien Plu
c8d3fa0dfd
Check TF ops for ONNX compliance (#10025)
* Add check-ops script

* Finish to implement check_tf_ops and start the test

* Make the test mandatory only for BERT

* Update tf_ops folder

* Remove useless classes

* Add the ONNX test for GPT2 and BART

* Add a onnxruntime slow test + better opset flexibility

* Fix test + apply style

* fix tests

* Switch min opset from 12 to 10

* Update src/transformers/file_utils.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Fix GPT2

* Remove extra shape_list usage

* Fix GPT2

* Address Morgan's comments

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-02-15 07:55:10 -05:00
Julien Plu
fdcde144d8
Add XLA test (#9848) 2021-01-29 11:25:03 +01:00
Julien Plu
2c891c156d
Add a test for mixed precision (#9806) 2021-01-27 03:36:49 -05:00
Daniel Stancl
1867d9a8d7
Add head_mask/decoder_head_mask for TF BART models (#9639)
* Add head_mask/decoder_head_mask for TF BART models

* Add head_mask and decoder_head_mask input arguments for TF BART-based
models as a TF counterpart to the PR #9569

* Add test_headmasking functionality to tests/test_modeling_tf_common.py

* TODO: Add a test to verify that we can get a gradient back for
importance score computation

* Remove redundant #TODO note

Remove redundant #TODO note from tests/test_modeling_tf_common.py

* Fix assertions

* Make style

* Fix ...Model input args and adjust one new test

* Add back head_mask and decoder_head_mask to BART-based ...Model
after the last commit

* Remove head_mask ande decoder_head_mask from input_dict
in TF test_train_pipeline_custom_model as these two have different
shape than other input args (Necessary for passing this test)

* Revert adding global_rng in test_modeling_tf_common.py
2021-01-26 03:50:00 -05:00
Sylvain Gugger
1073a2bde5
Switch return_dict to True by default. (#8530)
* Use the CI to identify failing tests

* Remove from all examples and tests

* More default switch

* Fixes

* More test fixes

* More fixes

* Last fixes hopefully

* Use the CI to identify failing tests

* Remove from all examples and tests

* More default switch

* Fixes

* More test fixes

* More fixes

* Last fixes hopefully

* Run on the real suite

* Fix slow tests
2020-11-16 11:43:00 -05:00
Lysandre Debut
10f8c63620
Ci test tf super slow (#8007)
* Test TF GPU CI

* Change cache

* Fix missing torch requirement

* Fix some model tests


Style

* LXMERT

* MobileBERT

* Longformer skip test

* XLNet

* The rest of the tests

* RAG goes OOM in multi gpu setup

* YAML test files

* Last fixes

* Skip doctests

* Fill mask tests

* Yaml files

* Last test fix

* Style

* Update cache

* Change ONNX tests to slow + use tiny model
2020-10-30 10:25:48 -04:00
Thomas Wolf
ba8c4d0ac0
[Dependencies|tokenizers] Make both SentencePiece and Tokenizers optional dependencies (#7659)
* splitting fast and slow tokenizers [WIP]

* [WIP] splitting sentencepiece and tokenizers dependencies

* update dummy objects

* add name_or_path to models and tokenizers

* prefix added to file names

* prefix

* styling + quality

* spliting all the tokenizer files - sorting sentencepiece based ones

* update tokenizer version up to 0.9.0

* remove hard dependency on sentencepiece 🎉

* and removed hard dependency on tokenizers 🎉

* update conversion script

* update missing models

* fixing tests

* move test_tokenization_fast to main tokenization tests - fix bugs

* bump up tokenizers

* fix bert_generation

* update ad fix several tokenizers

* keep sentencepiece in deps for now

* fix funnel and deberta tests

* fix fsmt

* fix marian tests

* fix layoutlm

* fix squeezebert and gpt2

* fix T5 tokenization

* fix xlnet tests

* style

* fix mbart

* bump up tokenizers to 0.9.2

* fix model tests

* fix tf models

* fix seq2seq examples

* fix tests without sentencepiece

* fix slow => fast  conversion without sentencepiece

* update auto and bert generation tests

* fix mbart tests

* fix auto and common test without tokenizers

* fix tests without tokenizers

* clean up tests lighten up when tokenizers + sentencepiece are both off

* style quality and tests fixing

* add sentencepiece to doc/examples reqs

* leave sentencepiece on for now

* style quality split hebert and fix pegasus

* WIP Herbert fast

* add sample_text_no_unicode and fix hebert tokenization

* skip FSMT example test for now

* fix style

* fix fsmt in example tests

* update following Lysandre and Sylvain's comments

* Update src/transformers/testing_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/testing_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2020-10-18 20:51:24 +02:00
Lysandre
a75c64d80c Black 20 release 2020-08-26 17:20:22 +02:00
Sylvain Gugger
a573777901
Update repo to isort v5 (#6686)
* Run new isort

* More changes

* Update CI, CONTRIBUTING and benchmarks
2020-08-24 11:03:01 -04:00
Stas Bekman
e983da0e7d
cleanup tf unittests: part 2 (#6260)
* cleanup torch unittests: part 2

* remove trailing comma added by isort, and which breaks flake

* one more comma

* revert odd balls

* part 3: odd cases

* more ["key"] -> .key refactoring

* .numpy() is not needed

* more unncessary .numpy() removed

* more simplification
2020-08-13 04:29:06 -04:00
Sylvain Gugger
c67d1a0259
Tf model outputs (#6247)
* TF outputs and test on BERT

* Albert to DistilBert

* All remaining TF models except T5

* Documentation

* One file forgotten

* TF outputs and test on BERT

* Albert to DistilBert

* All remaining TF models except T5

* Documentation

* One file forgotten

* Add new models and fix issues

* Quality improvements

* Add T5

* A bit of cleanup

* Fix for slow tests

* Style
2020-08-05 11:34:39 -04:00
Lysandre Debut
3f94170a10
[WIP] Test TF Flaubert + Add {XLM, Flaubert}{TokenClassification, MultipleC… (#5614)
* Test TF Flaubert + Add {XLM, Flaubert}{TokenClassification, MultipleChoice} models and tests

* AutoModels


Tiny tweaks

* Style

* Final changes before merge

* Re-order for simpler review

* Final fixes

* Addressing @sgugger's comments

* Test MultipleChoice
2020-07-29 14:26:26 -04:00
Sam Shleifer
13deb95a40
Move tests/utils.py -> transformers/testing_utils.py (#5350) 2020-07-01 10:31:17 -04:00
Julien Plu
f9414f7553
Tensorflow improvements (#4530)
* Better None gradients handling

* Apply Style

* Apply Style

* Create a loss class per task to compute its respective loss

* Add loss classes to the ALBERT TF models

* Add loss classes to the BERT TF models

* Add question answering and multiple choice to TF Camembert

* Remove prints

* Add multiple choice model to TF DistilBERT + loss computation

* Add question answering model to TF Electra + loss computation

* Add token classification, question answering and multiple choice models to TF Flaubert

* Add multiple choice model to TF Roberta + loss computation

* Add multiple choice model to TF XLM + loss computation

* Add multiple choice and question answering models to TF XLM-Roberta

* Add multiple choice model to TF XLNet + loss computation

* Remove unused parameters

* Add task loss classes

* Reorder TF imports + add new model classes

* Add new model classes

* Bugfix in TF T5 model

* Bugfix for TF T5 tests

* Bugfix in TF T5 model

* Fix TF T5 model tests

* Fix T5 tests + some renaming

* Fix inheritance issue in the AutoX tests

* Add tests for TF Flaubert and TF XLM Roberta

* Add tests for TF Flaubert and TF XLM Roberta

* Remove unused piece of code in the TF trainer

* bugfix and remove unused code

* Bugfix for TF 2.2

* Apply Style

* Divide TFSequenceClassificationAndMultipleChoiceLoss into their two respective name

* Apply style

* Mirror the PT Trainer in the TF one: fp16, optimizers and tb_writer as class parameter and better dataset handling

* Fix TF optimizations tests and apply style

* Remove useless parameter

* Bugfix and apply style

* Fix TF Trainer prediction

* Now the TF models return the loss such as their PyTorch couterparts

* Apply Style

* Ignore some tests output

* Take into account the SQuAD cls_index, p_mask and is_impossible parameters for the QuestionAnswering task models.

* Fix names for SQuAD data

* Apply Style

* Fix conflicts with 2.11 release

* Fix conflicts with 2.11

* Fix wrongname

* Add better documentation on the new create_optimizer function

* Fix isort

* logging_dir: use same default as PyTorch

Co-authored-by: Julien Chaumond <chaumond@gmail.com>
2020-06-04 19:45:53 -04:00