transformers/tests/test_modeling_tf_flaubert.py

54 lines
1.8 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
if is_tf_available():
import tensorflow as tf
import numpy as np
from transformers import TFFlaubertModel
@require_tf
class TFFlaubertModelIntegrationTest(unittest.TestCase):
@slow
def test_output_embeds_base_model(self):
model = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased")
input_ids = tf.convert_to_tensor(
[[0, 158, 735, 2592, 1424, 6727, 82, 1]], dtype=tf.int32,
) # "J'aime flaubert !"
output = model(input_ids)[0]
expected_shape = tf.TensorShape((1, 8, 512))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice.
expected_slice = tf.convert_to_tensor(
[
[
[-1.8768773, -1.566555, 0.27072418],
[-1.6920038, -0.5873505, 1.9329599],
[-2.9563985, -1.6993835, 1.7972052],
]
],
dtype=tf.float32,
)
self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))