transformers/tests/test_modeling_tf_flaubert.py
Julien Plu f9414f7553
Tensorflow improvements (#4530)
* Better None gradients handling

* Apply Style

* Apply Style

* Create a loss class per task to compute its respective loss

* Add loss classes to the ALBERT TF models

* Add loss classes to the BERT TF models

* Add question answering and multiple choice to TF Camembert

* Remove prints

* Add multiple choice model to TF DistilBERT + loss computation

* Add question answering model to TF Electra + loss computation

* Add token classification, question answering and multiple choice models to TF Flaubert

* Add multiple choice model to TF Roberta + loss computation

* Add multiple choice model to TF XLM + loss computation

* Add multiple choice and question answering models to TF XLM-Roberta

* Add multiple choice model to TF XLNet + loss computation

* Remove unused parameters

* Add task loss classes

* Reorder TF imports + add new model classes

* Add new model classes

* Bugfix in TF T5 model

* Bugfix for TF T5 tests

* Bugfix in TF T5 model

* Fix TF T5 model tests

* Fix T5 tests + some renaming

* Fix inheritance issue in the AutoX tests

* Add tests for TF Flaubert and TF XLM Roberta

* Add tests for TF Flaubert and TF XLM Roberta

* Remove unused piece of code in the TF trainer

* bugfix and remove unused code

* Bugfix for TF 2.2

* Apply Style

* Divide TFSequenceClassificationAndMultipleChoiceLoss into their two respective name

* Apply style

* Mirror the PT Trainer in the TF one: fp16, optimizers and tb_writer as class parameter and better dataset handling

* Fix TF optimizations tests and apply style

* Remove useless parameter

* Bugfix and apply style

* Fix TF Trainer prediction

* Now the TF models return the loss such as their PyTorch couterparts

* Apply Style

* Ignore some tests output

* Take into account the SQuAD cls_index, p_mask and is_impossible parameters for the QuestionAnswering task models.

* Fix names for SQuAD data

* Apply Style

* Fix conflicts with 2.11 release

* Fix conflicts with 2.11

* Fix wrongname

* Add better documentation on the new create_optimizer function

* Fix isort

* logging_dir: use same default as PyTorch

Co-authored-by: Julien Chaumond <chaumond@gmail.com>
2020-06-04 19:45:53 -04:00

55 lines
1.8 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_tf_available
from .utils import require_tf, slow
if is_tf_available():
import tensorflow as tf
import numpy as np
from transformers import TFFlaubertModel
@require_tf
class TFFlaubertModelIntegrationTest(unittest.TestCase):
@slow
def test_output_embeds_base_model(self):
model = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased")
input_ids = tf.convert_to_tensor(
[[0, 158, 735, 2592, 1424, 6727, 82, 1]], dtype=tf.int32,
) # "J'aime flaubert !"
output = model(input_ids)[0]
expected_shape = tf.TensorShape((1, 8, 512))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice.
expected_slice = tf.convert_to_tensor(
[
[
[-1.8768773, -1.566555, 0.27072418],
[-1.6920038, -0.5873505, 1.9329599],
[-2.9563985, -1.6993835, 1.7972052],
]
],
dtype=tf.float32,
)
self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))