* Enable instantiating model with pretrained backbone weights
* Update tests so backbone checkpoint isn't passed in
* Remove doc updates until changes made in modeling code
* Clarify pretrained import
* Update configs - docs and validation check
* Update src/transformers/utils/backbone_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Clarify exception message
* Update config init in tests
* Add test for when use_timm_backbone=True
* Small test updates
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* [DETA] fix freeze/unfreeze function
* Update src/transformers/models/deta/modeling_deta.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/models/deta/modeling_deta.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add freeze/unfreeze test case in DETA
* fix type
* fix typo 2
* fix : enable aux and enc loss in training pipeline
* Add unsynced variables from original DETA for training
* modification for passing CI test
* make style
* make fix
* manual make fix
* change deta_modeling_test of configuration 'two_stage' default to TRUE and minor change of dist checking
* remove print
* divide configuration in DetaModel and DetaForObjectDetection
* image smaller size than 224 will give topk error
* pred_boxes and logits should be equivalent to two_stage_num_proposals
* add missing part in DetaConfig
* Update src/transformers/models/deta/modeling_deta.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add docstring in configure and prettify TO DO part
* change distribute related code to accelerate
* Update src/transformers/models/deta/configuration_deta.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/deta/test_modeling_deta.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* protect importing accelerate
* change variable name to specific value
* wrong import
* fix aux_loss in conditional_detr
* add test aux_loss
* add aux_loss test in deta and table_transformer
* fix yolos since it doesn't have auxiliary function
* fix maskformer auxiliary_loss related code
* make style
* change param 'auxiliary_loss' to 'use_auxiliary_loss'
* change param 'auxiliary_loss' to 'use_auxiliary_loss' in tests
* make style & fix-copies, also revert yolos related parameter
* revert variable name 'use_auxiliary_loss' to 'auxiliary_loss' due to DetrConfig
* revert variable name in yolos
* revert maskformer
* add aux_loss test in maskformer
* make style
* Update src/transformers/models/yolos/configuration_yolos.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* try to stylify using ruff
* might need to remove these changes?
* use ruf format andruff check
* use isinstance instead of type comparision
* use # fmt: skip
* use # fmt: skip
* nits
* soem styling changes
* update ci job
* nits isinstance
* more files update
* nits
* more nits
* small nits
* check and format
* revert wrong changes
* actually use formatter instead of checker
* nits
* well docbuilder is overwriting this commit
* revert notebook changes
* try to nuke docbuilder
* style
* fix feature exrtaction test
* remve `indent-width = 4`
* fixup
* more nits
* update the ruff version that we use
* style
* nuke docbuilder styling
* leve the print for detected changes
* nits
* Remove file I/O
Co-authored-by: charliermarsh
<charlie.r.marsh@gmail.com>
* style
* nits
* revert notebook changes
* Add # fmt skip when possible
* Add # fmt skip when possible
* Fix
* More ` # fmt: skip` usage
* More ` # fmt: skip` usage
* More ` # fmt: skip` usage
* NIts
* more fixes
* fix tapas
* Another way to skip
* Recommended way
* Fix two more fiels
* Remove asynch
Remove asynch
---------
Co-authored-by: charliermarsh <charlie.r.marsh@gmail.com>
* Refactor image processor test mixin
- Move test_call_numpy, test_call_pytorch, test_call_pil to mixin
- Rename mixin to reflect handling of logic more than saving
- Add prepare_image_inputs, expected_image_outputs for tests
* Fix for oneformer
* Add out_indices to backbones, deprecate out_features
* Update - can specify both out_features and out_indices but not both
* Add backbone mixin tests
* Test tidy up
* Add test_backbone for convnext
* Remove redefinition of method
* Update for Dinat and Nat backbones
* Update tests
* Smarter indexing
* Add checks on config creation for backbone
* PR comments
* Result of black 23.1
* Update target to Python 3.7
* Switch flake8 to ruff
* Configure isort
* Configure isort
* Apply isort with line limit
* Put the right black version
* adapt black in check copies
* Fix copies
* Update imports and test fetcher
* Revert but keep test fetcher update
* Fix imports
* Fix all imports
* Replace fe with ip names
* Add generate kwargs to `AutomaticSpeechRecognitionPipeline` (#20952)
* Add generate kwargs to AutomaticSpeechRecognitionPipeline
* Add test for generation kwargs
* Update image processor parameters if creating with kwargs (#20866)
* Update parameters if creating with kwargs
* Shallow copy to prevent mutating input
* Pass all args in constructor dict - warnings in init
* Fix typo
* Rename tester class
* Rebase and tidy up
* Fixup
* Use ImageProcessingSavingTestMixin
* Update property ref in tests
* Update property ref in tests
* Update recently merged in models
* Small fix
Co-authored-by: bofeng huang <bofenghuang7@gmail.com>
* First draft
* Fix backwards compatibility
* More fixes
* More fixes
* Make backbone more general
* Improve backbone
* Improve test
* Fix config checkpoint
* Address comments
* Use model_type
* Address more comments
* Fix special model names
* Remove MaskFormerSwinModel and MaskFormerSwinPreTrainedModel from main init
* Fix typo
* Update backbone
* Apply suggestion
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Ensures post_process_instance_segmentation and post_process_panoptic_segmentation methods return a tensor of shape (target_height, target_width) filled with -1 values if no segment with score > threshold is found.
- Improves MaskFormer docs, corrects minor typos
- Restructures MaskFormerFeatureExtractor.post_process_panoptic_segmentation for better readability, adds target_sizes argument for optional resizing
- Adds post_process_semantic_segmentation and post_process_instance_segmentation methods.
- Adds a deprecation warning to post_process_segmentation method in favour of post_process_instance_segmentation