mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Make more test models smaller (#25005)
* Make more test models tiny * Make more test models tiny * More models * More models
This commit is contained in:
parent
8f1f0bf50f
commit
42571f6eb8
@ -133,7 +133,7 @@ class CTRLModelTester:
|
||||
n_embd=self.hidden_size,
|
||||
n_layer=self.num_hidden_layers,
|
||||
n_head=self.num_attention_heads,
|
||||
# intermediate_size=self.intermediate_size,
|
||||
dff=self.intermediate_size,
|
||||
# hidden_act=self.hidden_act,
|
||||
# hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
@ -243,10 +243,6 @@ class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
|
@ -95,7 +95,7 @@ class TFCTRLModelTester(object):
|
||||
n_embd=self.hidden_size,
|
||||
n_layer=self.num_hidden_layers,
|
||||
n_head=self.num_attention_heads,
|
||||
# intermediate_size=self.intermediate_size,
|
||||
dff=self.intermediate_size,
|
||||
# hidden_act=self.hidden_act,
|
||||
# hidden_dropout_prob=self.hidden_dropout_prob,
|
||||
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
|
@ -55,8 +55,8 @@ class CvtModelTester:
|
||||
batch_size=13,
|
||||
image_size=64,
|
||||
num_channels=3,
|
||||
embed_dim=[16, 48, 96],
|
||||
num_heads=[1, 3, 6],
|
||||
embed_dim=[16, 32, 48],
|
||||
num_heads=[1, 2, 3],
|
||||
depth=[1, 2, 10],
|
||||
patch_sizes=[7, 3, 3],
|
||||
patch_stride=[4, 2, 2],
|
||||
@ -247,10 +247,6 @@ class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
|
@ -45,8 +45,8 @@ class TFCvtModelTester:
|
||||
batch_size=13,
|
||||
image_size=64,
|
||||
num_channels=3,
|
||||
embed_dim=[16, 48, 96],
|
||||
num_heads=[1, 3, 6],
|
||||
embed_dim=[16, 32, 48],
|
||||
num_heads=[1, 2, 3],
|
||||
depth=[1, 2, 10],
|
||||
patch_sizes=[7, 3, 3],
|
||||
patch_stride=[4, 2, 2],
|
||||
|
@ -19,7 +19,7 @@ import inspect
|
||||
import math
|
||||
import unittest
|
||||
|
||||
from transformers import DetaConfig, is_torch_available, is_torchvision_available, is_vision_available
|
||||
from transformers import DetaConfig, ResNetConfig, is_torch_available, is_torchvision_available, is_vision_available
|
||||
from transformers.file_utils import cached_property
|
||||
from transformers.testing_utils import require_torchvision, require_vision, slow, torch_device
|
||||
|
||||
@ -49,7 +49,7 @@ class DetaModelTester:
|
||||
batch_size=8,
|
||||
is_training=True,
|
||||
use_labels=True,
|
||||
hidden_size=256,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=8,
|
||||
intermediate_size=4,
|
||||
@ -118,6 +118,16 @@ class DetaModelTester:
|
||||
return config, pixel_values, pixel_mask, labels
|
||||
|
||||
def get_config(self):
|
||||
resnet_config = ResNetConfig(
|
||||
num_channels=3,
|
||||
embeddings_size=10,
|
||||
hidden_sizes=[10, 20, 30, 40],
|
||||
depths=[1, 1, 2, 1],
|
||||
hidden_act="relu",
|
||||
num_labels=3,
|
||||
out_features=["stage2", "stage3", "stage4"],
|
||||
out_indices=[2, 3, 4],
|
||||
)
|
||||
return DetaConfig(
|
||||
d_model=self.hidden_size,
|
||||
encoder_layers=self.num_hidden_layers,
|
||||
@ -134,6 +144,7 @@ class DetaModelTester:
|
||||
encoder_n_points=self.encoder_n_points,
|
||||
decoder_n_points=self.decoder_n_points,
|
||||
two_stage=self.two_stage,
|
||||
backbone_config=resnet_config,
|
||||
)
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
@ -423,10 +434,6 @@ class DetaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin
|
||||
def test_tied_model_weights_key_ignore(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
def test_initialization(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
|
@ -62,6 +62,7 @@ class DPTModelTester:
|
||||
attention_probs_dropout_prob=0.1,
|
||||
initializer_range=0.02,
|
||||
num_labels=3,
|
||||
neck_hidden_sizes=[16, 16, 32, 32],
|
||||
is_hybrid=False,
|
||||
scope=None,
|
||||
):
|
||||
@ -84,6 +85,7 @@ class DPTModelTester:
|
||||
self.num_labels = num_labels
|
||||
self.scope = scope
|
||||
self.is_hybrid = is_hybrid
|
||||
self.neck_hidden_sizes = neck_hidden_sizes
|
||||
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
self.seq_length = num_patches + 1
|
||||
@ -105,6 +107,7 @@ class DPTModelTester:
|
||||
patch_size=self.patch_size,
|
||||
num_channels=self.num_channels,
|
||||
hidden_size=self.hidden_size,
|
||||
fusion_hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
backbone_out_indices=self.backbone_out_indices,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
@ -115,6 +118,7 @@ class DPTModelTester:
|
||||
is_decoder=False,
|
||||
initializer_range=self.initializer_range,
|
||||
is_hybrid=self.is_hybrid,
|
||||
neck_hidden_sizes=self.neck_hidden_sizes,
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values, labels):
|
||||
@ -275,10 +279,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
|
@ -62,7 +62,8 @@ class DPTModelTester:
|
||||
attention_probs_dropout_prob=0.1,
|
||||
initializer_range=0.02,
|
||||
num_labels=3,
|
||||
backbone_featmap_shape=[1, 384, 24, 24],
|
||||
backbone_featmap_shape=[1, 32, 24, 24],
|
||||
neck_hidden_sizes=[16, 16, 32, 32],
|
||||
is_hybrid=True,
|
||||
scope=None,
|
||||
):
|
||||
@ -86,6 +87,7 @@ class DPTModelTester:
|
||||
self.backbone_featmap_shape = backbone_featmap_shape
|
||||
self.scope = scope
|
||||
self.is_hybrid = is_hybrid
|
||||
self.neck_hidden_sizes = neck_hidden_sizes
|
||||
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
self.seq_length = num_patches + 1
|
||||
@ -108,7 +110,7 @@ class DPTModelTester:
|
||||
"depths": [3, 4, 9],
|
||||
"out_features": ["stage1", "stage2", "stage3"],
|
||||
"embedding_dynamic_padding": True,
|
||||
"hidden_sizes": [96, 192, 384, 768],
|
||||
"hidden_sizes": [16, 16, 32, 32],
|
||||
"num_groups": 2,
|
||||
}
|
||||
|
||||
@ -117,6 +119,7 @@ class DPTModelTester:
|
||||
patch_size=self.patch_size,
|
||||
num_channels=self.num_channels,
|
||||
hidden_size=self.hidden_size,
|
||||
fusion_hidden_size=self.hidden_size,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
backbone_out_indices=self.backbone_out_indices,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
@ -129,6 +132,7 @@ class DPTModelTester:
|
||||
is_hybrid=self.is_hybrid,
|
||||
backbone_config=backbone_config,
|
||||
backbone_featmap_shape=self.backbone_featmap_shape,
|
||||
neck_hidden_sizes=self.neck_hidden_sizes,
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values, labels):
|
||||
@ -289,10 +293,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
|
||||
|
@ -49,7 +49,7 @@ class EfficientNetModelTester:
|
||||
num_channels=3,
|
||||
kernel_sizes=[3, 3, 5],
|
||||
in_channels=[32, 16, 24],
|
||||
out_channels=[16, 24, 40],
|
||||
out_channels=[16, 24, 20],
|
||||
strides=[1, 1, 2],
|
||||
num_block_repeats=[1, 1, 2],
|
||||
expand_ratios=[1, 6, 6],
|
||||
@ -223,10 +223,6 @@ class EfficientNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.Test
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
|
@ -77,16 +77,25 @@ class EncodecModelTester:
|
||||
batch_size=12,
|
||||
num_channels=2,
|
||||
is_training=False,
|
||||
num_hidden_layers=4,
|
||||
intermediate_size=40,
|
||||
hidden_size=32,
|
||||
num_filters=8,
|
||||
num_residual_layers=1,
|
||||
upsampling_ratios=[8, 4],
|
||||
num_lstm_layers=1,
|
||||
codebook_size=64,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
self.is_training = is_training
|
||||
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_filters = num_filters
|
||||
self.num_residual_layers = num_residual_layers
|
||||
self.upsampling_ratios = upsampling_ratios
|
||||
self.num_lstm_layers = num_lstm_layers
|
||||
self.codebook_size = codebook_size
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
|
||||
@ -99,7 +108,16 @@ class EncodecModelTester:
|
||||
return config, inputs_dict
|
||||
|
||||
def get_config(self):
|
||||
return EncodecConfig(audio_channels=self.num_channels, chunk_in_sec=None)
|
||||
return EncodecConfig(
|
||||
audio_channels=self.num_channels,
|
||||
chunk_in_sec=None,
|
||||
hidden_size=self.hidden_size,
|
||||
num_filters=self.num_filters,
|
||||
num_residual_layers=self.num_residual_layers,
|
||||
upsampling_ratios=self.upsampling_ratios,
|
||||
num_lstm_layers=self.num_lstm_layers,
|
||||
codebook_size=self.codebook_size,
|
||||
)
|
||||
|
||||
def create_and_check_model_forward(self, config, inputs_dict):
|
||||
model = EncodecModel(config=config).to(torch_device).eval()
|
||||
@ -397,10 +415,6 @@ class EncodecModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
def test_identity_shortcut(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
||||
config.use_conv_shortcut = False
|
||||
|
@ -279,10 +279,6 @@ class EsmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
def test_resize_tokens_embeddings(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
|
||||
@require_torch
|
||||
class EsmModelIntegrationTest(TestCasePlus):
|
||||
|
@ -100,6 +100,28 @@ class EsmFoldModelTester:
|
||||
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
|
||||
def get_config(self):
|
||||
esmfold_config = {
|
||||
"trunk": {
|
||||
"num_blocks": 2,
|
||||
"sequence_state_dim": 64,
|
||||
"pairwise_state_dim": 16,
|
||||
"sequence_head_width": 4,
|
||||
"pairwise_head_width": 4,
|
||||
"position_bins": 4,
|
||||
"chunk_size": 16,
|
||||
"structure_module": {
|
||||
"ipa_dim": 16,
|
||||
"num_angles": 7,
|
||||
"num_blocks": 2,
|
||||
"num_heads_ipa": 4,
|
||||
"pairwise_dim": 16,
|
||||
"resnet_dim": 16,
|
||||
"sequence_dim": 48,
|
||||
},
|
||||
},
|
||||
"fp16_esm": False,
|
||||
"lddt_head_hid_dim": 16,
|
||||
}
|
||||
config = EsmConfig(
|
||||
vocab_size=33,
|
||||
hidden_size=self.hidden_size,
|
||||
@ -114,7 +136,7 @@ class EsmFoldModelTester:
|
||||
type_vocab_size=self.type_vocab_size,
|
||||
initializer_range=self.initializer_range,
|
||||
is_folding_model=True,
|
||||
esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False},
|
||||
esmfold_config=esmfold_config,
|
||||
)
|
||||
return config
|
||||
|
||||
@ -126,8 +148,8 @@ class EsmFoldModelTester:
|
||||
result = model(input_ids)
|
||||
result = model(input_ids)
|
||||
|
||||
self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3))
|
||||
self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2))
|
||||
self.parent.assertEqual(result.positions.shape, (2, self.batch_size, self.seq_length, 14, 3))
|
||||
self.parent.assertEqual(result.angles.shape, (2, self.batch_size, self.seq_length, 7, 2))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
@ -243,10 +265,6 @@ class EsmFoldModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
|
||||
def test_multi_gpu_data_parallel_forward(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
|
||||
@require_torch
|
||||
class EsmModelIntegrationTest(TestCasePlus):
|
||||
|
@ -92,7 +92,7 @@ class FlavaImageModelTester:
|
||||
num_channels=3,
|
||||
qkv_bias=True,
|
||||
mask_token=True,
|
||||
vocab_size=8192,
|
||||
vocab_size=99,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
@ -321,10 +321,6 @@ class FlavaImageModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
def test_save_load_fast_init_to_base(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
@ -341,7 +337,7 @@ class FlavaTextModelTester:
|
||||
is_training=True,
|
||||
use_input_mask=True,
|
||||
use_token_type_ids=True,
|
||||
vocab_size=30522,
|
||||
vocab_size=102,
|
||||
type_vocab_size=2,
|
||||
max_position_embeddings=512,
|
||||
position_embedding_type="absolute",
|
||||
@ -476,10 +472,6 @@ class FlavaTextModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
def test_save_load_fast_init_to_base(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
@ -632,10 +624,6 @@ class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
def test_save_load_fast_init_to_base(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
@ -644,11 +632,23 @@ class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
|
||||
|
||||
class FlavaImageCodebookTester:
|
||||
def __init__(self, parent, batch_size=12, image_size=112, num_channels=3):
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=12,
|
||||
image_size=112,
|
||||
num_channels=3,
|
||||
hidden_size=32,
|
||||
num_groups=2,
|
||||
vocab_size=99,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.image_size = image_size
|
||||
self.num_channels = num_channels
|
||||
self.hidden_size = hidden_size
|
||||
self.num_groups = num_groups
|
||||
self.vocab_size = vocab_size
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
||||
@ -657,7 +657,9 @@ class FlavaImageCodebookTester:
|
||||
return config, pixel_values
|
||||
|
||||
def get_config(self):
|
||||
return FlavaImageCodebookConfig()
|
||||
return FlavaImageCodebookConfig(
|
||||
hidden_size=self.hidden_size, num_groups=self.num_groups, vocab_size=self.vocab_size
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values):
|
||||
model = FlavaImageCodebook(config=config)
|
||||
@ -743,10 +745,6 @@ class FlavaImageCodebookTest(ModelTesterMixin, unittest.TestCase):
|
||||
def test_save_load_fast_init_to_base(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
@ -929,10 +927,6 @@ class FlavaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
def _create_and_check_torchscript(self, config, inputs_dict):
|
||||
if not self.test_torchscript:
|
||||
return
|
||||
|
@ -203,7 +203,7 @@ class GitModelTester:
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
num_hidden_layers=5,
|
||||
num_hidden_layers=4,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
hidden_act="gelu",
|
||||
@ -268,6 +268,10 @@ class GitModelTester:
|
||||
"num_channels": self.num_channels,
|
||||
"image_size": self.image_size,
|
||||
"patch_size": self.patch_size,
|
||||
"hidden_size": self.hidden_size,
|
||||
"projection_dim": 32,
|
||||
"num_hidden_layers": self.num_hidden_layers,
|
||||
"num_attention_heads": self.num_attention_heads,
|
||||
},
|
||||
vocab_size=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
@ -454,10 +458,6 @@ class GitModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
|
||||
def test_greedy_generate_dict_outputs_use_cache(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
|
@ -38,7 +38,7 @@ class GPTSanJapaneseTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
vocab_size=36000,
|
||||
vocab_size=99,
|
||||
batch_size=13,
|
||||
num_contexts=7,
|
||||
# For common tests
|
||||
@ -182,10 +182,6 @@ class GPTSanJapaneseTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas
|
||||
def test_model_parallelism(self):
|
||||
super().test_model_parallelism()
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
|
||||
@require_torch
|
||||
class GPTSanJapaneseForConditionalGenerationTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
||||
@ -216,10 +212,6 @@ class GPTSanJapaneseForConditionalGenerationTest(ModelTesterMixin, GenerationTes
|
||||
def test_model_parallelism(self):
|
||||
super().test_model_parallelism()
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_logits(self):
|
||||
model = GPTSanJapaneseForConditionalGeneration.from_pretrained("Tanrei/GPTSAN-japanese")
|
||||
|
@ -42,22 +42,22 @@ class GraphormerModelTester:
|
||||
self,
|
||||
parent,
|
||||
num_classes=1,
|
||||
num_atoms=512 * 9,
|
||||
num_edges=512 * 3,
|
||||
num_in_degree=512,
|
||||
num_out_degree=512,
|
||||
num_spatial=512,
|
||||
num_edge_dis=128,
|
||||
num_atoms=32 * 9,
|
||||
num_edges=32 * 3,
|
||||
num_in_degree=32,
|
||||
num_out_degree=32,
|
||||
num_spatial=32,
|
||||
num_edge_dis=16,
|
||||
multi_hop_max_dist=5, # sometimes is 20
|
||||
spatial_pos_max=1024,
|
||||
spatial_pos_max=32,
|
||||
edge_type="multi_hop",
|
||||
init_fn=None,
|
||||
max_nodes=512,
|
||||
max_nodes=32,
|
||||
share_input_output_embed=False,
|
||||
num_hidden_layers=12,
|
||||
embedding_dim=768,
|
||||
ffn_embedding_dim=768,
|
||||
num_attention_heads=32,
|
||||
num_hidden_layers=2,
|
||||
embedding_dim=32,
|
||||
ffn_embedding_dim=32,
|
||||
num_attention_heads=4,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.1,
|
||||
activation_dropout=0.1,
|
||||
@ -470,10 +470,6 @@ class GraphormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_for_graph_classification(*config_and_inputs)
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
|
@ -67,10 +67,10 @@ class LevitModelTester:
|
||||
stride=2,
|
||||
padding=1,
|
||||
patch_size=16,
|
||||
hidden_sizes=[128, 256, 384],
|
||||
num_attention_heads=[4, 6, 8],
|
||||
hidden_sizes=[16, 32, 48],
|
||||
num_attention_heads=[1, 2, 3],
|
||||
depths=[2, 3, 4],
|
||||
key_dim=[16, 16, 16],
|
||||
key_dim=[8, 8, 8],
|
||||
drop_path_rate=0,
|
||||
mlp_ratio=[2, 2, 2],
|
||||
attention_ratio=[2, 2, 2],
|
||||
@ -282,10 +282,6 @@ class LevitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
check_hidden_states_output(inputs_dict, config, model_class)
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
||||
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
||||
|
||||
|
@ -54,6 +54,8 @@ class Mask2FormerModelTester:
|
||||
max_size=32 * 8,
|
||||
num_labels=4,
|
||||
hidden_dim=64,
|
||||
num_attention_heads=4,
|
||||
num_hidden_layers=2,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
@ -66,6 +68,8 @@ class Mask2FormerModelTester:
|
||||
self.num_labels = num_labels
|
||||
self.hidden_dim = hidden_dim
|
||||
self.mask_feature_size = hidden_dim
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to(
|
||||
@ -85,15 +89,25 @@ class Mask2FormerModelTester:
|
||||
def get_config(self):
|
||||
config = Mask2FormerConfig(
|
||||
hidden_size=self.hidden_dim,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
encoder_feedforward_dim=16,
|
||||
dim_feedforward=32,
|
||||
num_queries=self.num_queries,
|
||||
num_labels=self.num_labels,
|
||||
decoder_layers=2,
|
||||
encoder_layers=2,
|
||||
feature_size=16,
|
||||
)
|
||||
config.num_queries = self.num_queries
|
||||
config.num_labels = self.num_labels
|
||||
|
||||
config.backbone_config.embed_dim = 16
|
||||
config.backbone_config.depths = [1, 1, 1, 1]
|
||||
config.backbone_config.hidden_size = 16
|
||||
config.backbone_config.num_channels = self.num_channels
|
||||
config.backbone_config.num_heads = [1, 1, 2, 2]
|
||||
|
||||
config.encoder_feedforward_dim = 64
|
||||
config.dim_feedforward = 128
|
||||
config.hidden_dim = self.hidden_dim
|
||||
config.mask_feature_size = self.hidden_dim
|
||||
config.feature_size = self.hidden_dim
|
||||
@ -220,10 +234,6 @@ class Mask2FormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC
|
||||
def test_multi_gpu_data_parallel_forward(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
def test_forward_signature(self):
|
||||
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
|
@ -85,9 +85,15 @@ class MaskFormerModelTester:
|
||||
return MaskFormerConfig.from_backbone_and_decoder_configs(
|
||||
backbone_config=SwinConfig(
|
||||
depths=[1, 1, 1, 1],
|
||||
embed_dim=16,
|
||||
hidden_size=32,
|
||||
num_heads=[1, 1, 2, 2],
|
||||
),
|
||||
decoder_config=DetrConfig(
|
||||
decoder_ffn_dim=128,
|
||||
decoder_ffn_dim=64,
|
||||
decoder_layers=2,
|
||||
encoder_ffn_dim=64,
|
||||
encoder_layers=2,
|
||||
num_queries=self.num_queries,
|
||||
decoder_attention_heads=2,
|
||||
d_model=self.mask_feature_size,
|
||||
@ -224,10 +230,6 @@ class MaskFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
|
||||
def test_multi_gpu_data_parallel_forward(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
def test_forward_signature(self):
|
||||
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
|
@ -56,7 +56,7 @@ class MobileViTModelTester:
|
||||
image_size=32,
|
||||
patch_size=2,
|
||||
num_channels=3,
|
||||
last_hidden_size=640,
|
||||
last_hidden_size=32,
|
||||
num_attention_heads=4,
|
||||
hidden_act="silu",
|
||||
conv_kernel_size=3,
|
||||
@ -115,6 +115,8 @@ class MobileViTModelTester:
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
classifier_dropout_prob=self.classifier_dropout_prob,
|
||||
initializer_range=self.initializer_range,
|
||||
hidden_sizes=[12, 16, 20],
|
||||
neck_hidden_sizes=[8, 8, 16, 16, 32, 32, 32],
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
|
||||
@ -231,10 +233,6 @@ class MobileViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas
|
||||
expected_arg_names = ["pixel_values"]
|
||||
self.assertListEqual(arg_names[:1], expected_arg_names)
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
def test_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_model(*config_and_inputs)
|
||||
|
@ -59,7 +59,7 @@ class TFMobileViTModelTester:
|
||||
image_size=32,
|
||||
patch_size=2,
|
||||
num_channels=3,
|
||||
last_hidden_size=640,
|
||||
last_hidden_size=32,
|
||||
num_attention_heads=4,
|
||||
hidden_act="silu",
|
||||
conv_kernel_size=3,
|
||||
@ -118,6 +118,8 @@ class TFMobileViTModelTester:
|
||||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||||
classifier_dropout_prob=self.classifier_dropout_prob,
|
||||
initializer_range=self.initializer_range,
|
||||
hidden_sizes=[12, 16, 20],
|
||||
neck_hidden_sizes=[8, 8, 16, 16, 32, 32, 32],
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
|
||||
|
@ -115,6 +115,9 @@ class MobileViTV2ModelTester:
|
||||
width_multiplier=self.width_multiplier,
|
||||
ffn_dropout=self.ffn_dropout_prob,
|
||||
attn_dropout=self.attn_dropout_prob,
|
||||
base_attn_unit_dims=[16, 24, 32],
|
||||
n_attn_blocks=[1, 1, 2],
|
||||
aspp_out_channels=32,
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
|
||||
@ -225,10 +228,6 @@ class MobileViTV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC
|
||||
def test_multi_gpu_data_parallel_forward(self):
|
||||
pass
|
||||
|
||||
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
|
||||
def test_model_is_small(self):
|
||||
pass
|
||||
|
||||
def test_forward_signature(self):
|
||||
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
|
@ -2708,7 +2708,7 @@ class ModelTesterMixin:
|
||||
def test_model_is_small(self):
|
||||
# Just a consistency check to make sure we are not running tests on 80M parameter models.
|
||||
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
# print(config)
|
||||
print(config)
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config)
|
||||
|
Loading…
Reference in New Issue
Block a user