* Pass datasets trust_remote_code
* Pass trust_remote_code in more tests
* Add trust_remote_dataset_code arg to some tests
* Revert "Temporarily pin datasets upper version to fix CI"
This reverts commit b7672826ca.
* Pass trust_remote_code in librispeech_asr_dummy docstrings
* Revert "Pin datasets<2.20.0 for examples"
This reverts commit 833fc17a3e.
* Pass trust_remote_code to all examples
* Revert "Add trust_remote_dataset_code arg to some tests" to research_projects
* Pass trust_remote_code to tests
* Pass trust_remote_code to docstrings
* Fix flax examples tests requirements
* Pass trust_remote_dataset_code arg to tests
* Replace trust_remote_dataset_code with trust_remote_code in one example
* Fix duplicate trust_remote_code
* Replace args.trust_remote_dataset_code with args.trust_remote_code
* Replace trust_remote_dataset_code with trust_remote_code in parser
* Replace trust_remote_dataset_code with trust_remote_code in dataclasses
* Replace trust_remote_dataset_code with trust_remote_code arg
* Remove deprecated logic and warnings
* Add back some code that seems to be important...
* Let's just add all he nllb stuff back; removing it is a bit more involved
* Remove kwargs
* Remove more kwargs
* Update legacy Repository usage in `examples/pytorch/text-classification/run_glue_no_trainer.py`
Marked for deprecation here https://huggingface.co/docs/huggingface_hub/guides/upload#legacy-upload-files-with-git-lfs
* Fix import order
* Replace all example usage of deprecated Repository
* Fix remaining repo call and rename args variable
* Revert removing creation of gitignore files and don't change research examples
* Add run_mim_no_trainer.py draft from #20412
Add parse_args method and copy over other dependencies
Add Method call for sending telemetry
Initialize Accelerator
Make one log on every process
Set seed and Handle repository creation
Initialize dataset and Set validation split
Create Config
Adapt Config
Update Config
Create Feature Extractor
Create model
Set column names
Create transforms
Create mask generator
Create method to preprocess images
Shuffle datasets if needed and set transforms
Create Dataloaders
Add optimizer
Add learning rate scheduler
Prepare everything with our accelerator
Tie weights for TPU training
Recalculate training steps and training epochs
Set accelerator checkpointing steps
Initialize trackers and store configuration
Set total batch size
Fix typo: mlm -> mim
Log info at the start of training
Load in the weights and states from previous save
update the progress_bar if load from checkpoint
Define train loop
Add evaluation loop to training
Add to parse_args method
Push repo to hub
Save accelerator state
End training and save model and feature extractor
Remove unused imports
Fix trailing whitespace
* Update code based on comments, Rename feature_extractor to image_processor
* Fix linting
* Add argument for learning rate
* Add argument for setting number of training epochs
* Remove incorrect logger argument
* Convert max_train_steps to int for tqdm
---------
Co-authored-by: Saad Mahmud <shuvro.mahmud79@gmail.com>