* rebasing changes
* fixing style
* adding some doc to functions
* remove bitblas
* change dtype
* fixing check_code_quality
* fixing import order
* adding doc to tree
* Small update on BitLinear
* adding some tests
* sorting imports
* small update
* reformatting
* reformatting
* reformatting with ruff
* adding assert
* changes after review
* update disk offloading
* adapting after review
* Update after review
* add is_serializable back
* fixing style
* adding serialization test
* make style
* small updates after review
* Fix Failed tests with mobile bert
* Cast to the correct dtype
* Code fixup
* Fix padding_idx larger that embedding_size
* Reduce covariance more. use 1e-7 instead of 1e-5
* Comment fix
* Reduce covariance more. use 1e-9 instead of 1e-7
* Copy new config
* all but MRA fixed
* fix mra
* very flaky
* skip instead
* make fixup
---------
Co-authored-by: Joao Gante <joao@huggingface.co>
* Update many similar visual pipelines
* Add input tests
* Add ImageToText as well
* Add output tests
* Add output tests
* Add output tests
* OutputElement -> Output
* Correctly test elements
* make fixup
* fix typo in the task list
* Fix VQA testing
* Add copyright to image_classification.py
* Revert changes to VQA pipeline because outputs have differences - will move to another PR
* make fixup
* Remove deprecation warnings
* Add Auto model for image-text-to-text
* Remove donut from processing auto, add chameleon ti image text to text models
* add qwen2_vl and llava_onevision
* add pixtral to auto model for image-text-to-text
* add mllama and idefics3
* remove models in IGNORE_NON_AUTO_CONFIGURED
* add AutoModelForImageTextToText to tests and doc
* Initial commit for MyT5 model
* custom implementation of MyT5 tokenizer, unused files deleted
* unittest for myt5 tokenizer
* upadate of import structure and style
* removed remmanents of MyT5Config
* fixed docstrings
* Updates after review: filled documentaion file, new docstrings and tests added
* Fixed code style issues
* fixed copied from to refer to function
* updated loading myt5 tokenizer in tests, added sample byte map file to fixtures
* changes after review
* removed redundant copied from
* removed redundant copied from
* optimalization and loading model from hf
* [run_slow] myt5
* [run-slow] myt5
* Updated en documentation for myt5
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* onboard phimoe model
* removed debug code
* added unit tests
* updated docs
* formatted
* fixed unit tests
* fixed test case
* fixed format
* refactored code
* fixed expected outputs in the integration tests
* Added a warning msg
* Addressed comments
* Addressed comments
* fixed test cases
* added paper link
* Addressed comments
* Refactored PhimoeForCausalLM forward fn
* Refactored PhimoeRotaryEmbedding class
* fixed test cases
* fixed testcase
* fixed test case
* Addressed comments
* fixed test cases
* fixed testcases
* Used cache position instead to get the seq len
* intilize new embeddings from normal distrib
* Fix typo in comments
* Fix typo in comments
* Fix style
* Fix variables naming
* Add tests
* Fix style
* code consistency nit
* Add deepspeed support
* Add deepspeed support
* Conver embeddings weights to float32 before computations
* Add deepspeed tests
* Cover when vocab_size is smaller than embedding_size
* Style fix
* Add tests for vocab_size smaller than hiddin_size
* Style fix
* Nits in tests
* Nits in tests
* Check for deepspeed before importing it
* Increase vocab_size for positive definite covariance matrix test
* Add warning
* Add multivariate_resizing flag and implement resizing for lm_heads
* Fix typo
* Fix wrong bias indexing
* Fix bias is zero check
* remove multivariate_resizing flag from tests
* Intialize bias from old bias normal distribution
* Fixup
* Code usability
* Use mean_resizing instead of multivariate_resizing
* Fix up
* Fix comments and docs
* enable cpu awq ipex linear
* add doc for cpu awq with ipex kernel
* add tests for cpu awq
* fix code style
* fix doc and tests
* Update docs/source/en/quantization/awq.md
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update tests/quantization/autoawq/test_awq.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* fix comments
* fix log
* fix log
* fix style
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* [PEFT] Support low_cpu_mem_usage for PEFT loading
PEFT added support for low_cpu_mem_usage=True when loading adapters in
https://github.com/huggingface/peft/pull/1961. This feature is now
available when installing PEFT v0.13.0. With this PR, this option is
also supported when loading PEFT adapters directly into transformers
models.
Additionally, with this PR,
https://github.com/huggingface/diffusers/pull/9510 will be unblocked,
which implements this option in diffusers.
* Fix typo
* fix beam indices in token_timestamps
* fix attention_mask in FA2
* correct translation example with the right example
* correct how somes tests are using outputs + correct num_frames
* fix shortform batch prev cond tests
* make fix-copies
* make fix-copies
* take care of shifting beam indices
* [run-slow] whisper
* [run-slow] whisper
* add unit tests for splinter_tokenizer
* add unit test for splinter tokenizer, pass in the question_token to be saved on save_pretrained called
* remove unused import
* remove vocab_splinter.txt, add Copied from, use fmt:on and fmt:off to prevent autoformatting on long lines
* remove all the spaces
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Trainer - deprecate tokenizer for processing_class
* Extend chage across Seq2Seq trainer and docs
* Add tests
* Update to FutureWarning and add deprecation version
* add support for custom inputs and batched inputs in ProcessorTesterMixin
* Fix batch_size behavior ProcessorTesterMixin
* Change format prepare inputs batched
* Remove override test pixtral processor
* Remove unnecessary tests and cleanup after new prepare_inputs functions
* Fix instructBlipVideo image processor
* Remove max_new_tokens arg
* Add ASR pipeline to testing
* make fixup
* Factor the output test out into a util
* Full error reporting
* Full error reporting
* Update src/transformers/pipelines/automatic_speech_recognition.py
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Small comment
---------
Co-authored-by: Lysandre Debut <hi@lysand.re>
* Fix Mamba slow path bug with dtype mismatch.
* Update test_modeling_mamba.py
* Improve style.
* Fix issue with cache position of dtype mismatch test.
* Change test for slow path.
* Revert changes.
* Switch to buggy code and add test to catch it.
* Fix the dtype mismatch bug and add test code to verify it.
* Fix minor bug with test.
* Fix incorrect dtype of model output.
* Fix incorrect dtype of cache.
* Fix incorrect dtype of ssm cache.
* Fix incorrect dtype of conv state.
* Remove assertion for ssm state.
* Add assertion for conv state dtype.
* Fix all issues with dtype mismatch test.
* HQQ model serialization attempt
* fix hqq dispatch and unexpected keys
* style
* remove check_old_param
* revert to check HQQLinear in quantizer_hqq.py
* revert to check HQQLinear in quantizer_hqq.py
* update HqqConfig default params
* make ci happy
* make ci happy
* revert to HQQLinear check in quantizer_hqq.py
* check hqq_min version 0.2.0
* set axis=1 as default in quantization_config.py
* validate_env with hqq>=0.2.0 version message
* deprecated hqq kwargs message
* make ci happy
* remove run_expected_keys_check hack + bump to 0.2.1 min hqq version
* fix unexpected_keys hqq update
* add pre_quantized check
* add update_expected_keys to base quantizerr
* ci base.py fix?
* ci base.py fix?
* fix "quantization typo" src/transformers/utils/quantization_config.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix post merge
---------
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Make audio classification pipeline spec-compliant and add test
* Check that test actually running in CI
* Try a different pipeline for the CI
* Move the test so it gets triggered
* Move it again, this time into task_tests!
* make fixup
* indentation fix
* comment
* Move everything from testing_utils to test_pipeline_mixin
* Add output testing too
* revert small diff with main
* make fixup
* Clarify comment
* Update tests/pipelines/test_pipelines_audio_classification.py
Co-authored-by: Lucain <lucainp@gmail.com>
* Update tests/test_pipeline_mixin.py
Co-authored-by: Lucain <lucainp@gmail.com>
* Rename function and js_args -> hub_args
* Cleanup the spec recursion
* Check keys for all outputs
---------
Co-authored-by: Lucain <lucainp@gmail.com>
* add bloom arch support for gguf
* apply format
* small refactoring, bug fix in GGUF_TENSOR_MAPPING naming
* optimize bloom GGUF_TENSOR_MAPPING
* implement reverse reshaping for bloom gguf
* add qkv weights test
* add q_8 test for bloom
* clean_up_tokenization_spaces=False if unset
* deprecate warning
* updating param for old models
* update models
* make fix-copies
* fix-copies and update bert models
* warning msg
* update prophet and clvp
* updating test since space before is arbitrarily removed
* remove warning for 4.45
* Add Idefics 3!
* fixes to make both pipelines identical
* fix for quantized models
* First pass at the review
* remove vocab size from the main config (it's still in the text_config)
* hot fix for merve
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* re-add model_type for text_config
* remove support for old_cache
* remove hidden_size from main config
* rename idefics3 HF repo
* few changes suggested in the PR
* fix to input_data_format computation
* remove overwrite of _autoset_attn_implementation following @zucchini-nlp suggestion
* improve example
* few improvements from amy's review
* big change to enable processing input images as numpy arrays
* Changes to the code to uniformize processor kwargs
* image processing tests
* image processing tests fixes and some bugs they discovered
* addressed review comments from Yoni
* fix modeling tests
* remove special tokens that are not special
* fixes tests
* skip failing tests - they also fail for idefics2
* added paper and readded the tests with multi gpu, who knows
* Update docs/source/en/model_doc/idefics3.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* review amy until image_processing_idefics3
* last comments from Amy
* review amy
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics3/modeling_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update docs/source/en/model_doc/idefics3.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* doc improvement - amy review
* fix runtime error during fine-tuning
* amy's review
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update src/transformers/models/idefics3/modeling_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* ruff
* amy's comment on the order
* ruff ruff
* fix copies
* square images when they are not splitted
* ruff :(
* Update src/transformers/models/idefics3/image_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update tests/models/idefics3/test_processing_idefics3.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix small bug introduced in refactor
* amy's image processing changes
* fixes peft tests and ruff
* modify to_pil_image from transformers. and review from emanuele.
* add modified to_pil_image
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add AdEMAMix optimizer
* Fix test
* Update tests/trainer/test_trainer.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Add compressed-tensors HFQuantizer implementation
* flag serializable as False
* run
* revive lines deleted by ruff
* fixes to load+save from sparseml, edit config to quantization_config, and load back
* address satrat comment
* compressed_tensors to compressed-tensors and revert back is_serializable
* rename quant_method from sparseml to compressed-tensors
* tests
* edit tests
* clean up tests
* make style
* cleanup
* cleanup
* add test skip for when compressed tensors is not installed
* remove pydantic import + style
* delay torch import in test
* initial docs
* update main init for compressed tensors config
* make fix-copies
* docstring
* remove fill_docstring
* Apply suggestions from code review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* review comments
* review comments
* comments - suppress warnings on state dict load, tests, fixes
* bug-fix - remove unnecessary call to apply quant lifecycle
* run_compressed compatability
* revert changes not needed for compression
* no longer need unexpected keys fn
* unexpected keys not needed either
* Apply suggestions from code review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* add to_diff_dict
* update docs and expand testing
* Update _toctree.yml with compressed-tensors
* Update src/transformers/utils/quantization_config.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* update doc
* add note about saving a loaded model
---------
Co-authored-by: George Ohashi <george@neuralmagic.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Sara Adkins <sara@neuralmagic.com>
Co-authored-by: Sara Adkins <sara.adkins65@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Dipika Sikka <ds3822@columbia.edu>
Co-authored-by: Dipika <dipikasikka1@gmail.com>
This commit fixes the following errors:
* Fix "expected all tensors to be on the same device" error
* Fix "can't convert device type tensor to numpy"
According to pytorch documentation torch.Tensor.numpy(force=False)
performs conversion only if tensor is on CPU (plus few other restrictions)
which is not the case. For our case we need force=True since we just
need a data and don't care about tensors coherency.
Fixes: #33517
See: https://pytorch.org/docs/2.4/generated/torch.Tensor.numpy.html
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
* enable cpu bnb path
* fix style
* fix code style
* fix 4 bit path
* Update src/transformers/utils/import_utils.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* add multi backend refactor tests
* fix style
* tweak 4bit quantizer + fix corresponding tests
* tweak 8bit quantizer + *try* fixing corresponding tests
* fix dequant bnb 8bit
* account for Intel CPU in variability of expected outputs
* enable cpu and xpu device map
* further tweaks to account for Intel CPU
* fix autocast to work with both cpu + cuda
* fix comments
* fix comments
* switch to testing_utils.torch_device
* allow for xpu in multi-gpu tests
* fix tests 4bit for CPU NF4
* fix bug with is_torch_xpu_available needing to be called as func
* avoid issue where test reports attr err due to other failure
* fix formatting
* fix typo from resolving of merge conflict
* polish based on last PR review
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* fix CI
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Update src/transformers/integrations/integration_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix error log
* fix error msg
* add \n in error log
* make quality
* rm bnb cuda restriction in doc
* cpu model don't need dispatch
* fix doc
* fix style
* check cuda avaliable in testing
* fix tests
* Update docs/source/en/model_doc/chameleon.md
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update docs/source/en/model_doc/llava_next.md
Co-authored-by: Aarni Koskela <akx@iki.fi>
* Update tests/quantization/bnb/test_4bit.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* Update tests/quantization/bnb/test_4bit.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* fix doc
* fix check multibackends
* fix import sort
* remove check torch in bnb
* docs: update bitsandbytes references with multi-backend info
* docs: fix small mistakes in bnb paragraph
* run formatting
* reveret bnb check
* move bnb multi-backend check to import_utils
* Update src/transformers/utils/import_utils.py
Co-authored-by: Aarni Koskela <akx@iki.fi>
* fix bnb check
* minor fix for bnb
* check lib first
* fix code style
* Revert "run formatting"
This reverts commit ac108c6d6b.
* fix format
* give warning when bnb version is low and no cuda found]
* fix device assignment check to be multi-device capable
* address akx feedback on get_avlbl_dev fn
* revert partially, as we don't want the function that public, as docs would be too much (enforced)
---------
Co-authored-by: Aarni Koskela <akx@iki.fi>
Co-authored-by: Titus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* add sdpa to dinov2
* fixup
* add dinov2 to sdpa doc
* update doc order
* [run-slow] dinov2
* common to eager
* [run-slow] dinov2
* update attn implementation in common
* update test_modeling_dinov2 to have mask_ration, num_masks and mask_length similar to vit
* [run-slow] dinov2
---------
Co-authored-by: Avishai Elmakies <avishai.elma@cs.huji.ac.il>
* enable low-precision pipeline
* fix parameter for ASR
* reformat
* fix asr bug
* fix bug for zero-shot
* add dtype check
* rm useless comments
* add np.float16 check
* Update src/transformers/pipelines/image_classification.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/pipelines/token_classification.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* fix comments
* fix asr check
* make fixup
* No more need for is_torch_available()
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Matt <rocketknight1@gmail.com>
* fix: handle padding in contrastive search for decoder-only models
* fix: handle padding in contrastive search for encoder-decoder models
* tests: move padding contrastive test to test_util, add t5 test
* fix: handle if model_kwargs["decoder_attention_mask"] is None
* refactor: improve padding input contrastive search generation tests
* chore: _ranking_fast to use LongTensor for cosine_matrix_mask
* add check and prepare args for BC to ProcessorMixin, improve ProcessorTesterMixin
* change size and crop_size in processor kwargs tests to do_rescale and rescale_factor
* remove unnecessary llava processor kwargs test overwrite
* nit
* change data_arg_name to input_name
* Remove unnecessary test override
* Remove unnecessary tests Paligemma
* Move test_prepare_and_validate_optional_call_args to TesterMixin, add docstring
* change sequence_bias type of SequenceBiasLogitsProcessor tp list, add config tests for all processors
* fix format
* small fix for all_token_bias_pairs_are_valid internal func
* small typo fix in description
* improve test impl, some SequenceBiasLogitsProcessor refactoring
* add tests
* fix whisper
* update
* nit
* add qwen2-vl
* more updates!
* better this way
* fix this one
* fix more tests
* fix final tests, hope so
* fix led
* Update tests/generation/test_utils.py
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* pr comments
* not pass pixels and extra for low-mem tests, very flaky because of visio tower
---------
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* clean mimi commit
* some nits suggestions from Arthur
* make fixup
* rename repo id + change readme
* Update docs/source/en/model_doc/mimi.md
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add flaky flag to batching equivalence due to audio_codes failing sometimes
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* _decode signature change and quick return
* added bunch of decoding tests
* signature match and return
* added tests for decoding
* merged decoding test
* more tests for special tokens
* cosmetics
* fixed param
* ruffed the file
* refinement for single special tokens
* added test for single special tokens
* slight change to test name
Co-authored-by: Ita Zaporozhets <31893021+itazap@users.noreply.github.com>
* minor change test name for skip tokens
Co-authored-by: Ita Zaporozhets <31893021+itazap@users.noreply.github.com>
* killed already defined var
Co-authored-by: Ita Zaporozhets <31893021+itazap@users.noreply.github.com>
* minor update with vars
Co-authored-by: Ita Zaporozhets <31893021+itazap@users.noreply.github.com>
* killed already defined var once more
Co-authored-by: Ita Zaporozhets <31893021+itazap@users.noreply.github.com>
---------
Co-authored-by: Ita Zaporozhets <31893021+itazap@users.noreply.github.com>
* fix patch_attention_mask incorrect setting which leads to the difference in the generated text if batch > 1
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* fix format
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* [run_slow] idefics2
---------
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* added sequences_scores to the output
* added beam_indices to output
* added test to check for beam_indices, sequences_scores and their shape
* removed redundant whitespaces
* make fixup
* idefics2 enable_input_require_grads not aligned with disable_input_require_grads
make peft+idefics2 checkpoints disable fail
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* split test case
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* fix ci failure
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* refine test
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
---------
Signed-off-by: Wang, Yi <yi.a.wang@intel.com>
* refactor weight_norm + propose uniformed solution to reconcile meta load_state_dict with classic loading
* make style
* fix sew
* fix sew and sew_d tests
* Fix failing tensor placement in Whisper
* fix long form generation tests
* more return_timestamps=True
* make fixup
* [run_slow] whisper
* [run_slow] whisper
* Uniformize kwargs for LlaVa and update docs
* Change order of processor inputs in docstring
* Improve BC support for reversed images and text inputs
* cleanup llava processor call docstring
* Add encoded inputs as valid text inputs in reverse input check, add deprecation version in warning
* Put function check reversed images text outside base processor class
* Refactor _validate_images_text_input_order
* Add ProcessingUtilTester
* fix processing and test_processing
* initial commit
* gloups
* updates
* work
* weights match
* nits
* nits
* updates to support the tokenizer :)
* updates
* Pixtral processor (#33454)
* rough outline
* Add in image break and end tokens
* Fix
* Udo some formatting changes
* Set patch_size default
* Fix
* Fix token expansion
* nit in conversion script
* Fix image token list creation
* done
* add expected results
* Process list of list of images (#33465)
* updates
* working image and processor
* this is the expected format
* some fixes
* push current updated
* working mult images!
* add a small integration test
* Uodate configuration docstring
* Formatting
* Config docstring fix
* simplify model test
* fixup modeling and etests
* Return BatchMixFeature in image processor
* fix some copies
* update
* nits
* Update model docstring
* Apply suggestions from code review
* Fix up
* updates
* revert modeling changes
* update
* update
* fix load safe
* addd liscence
* update
* use pixel_values as required by the model
* skip some tests and refactor
* Add pixtral image processing tests (#33476)
* Image processing tests
* Add processing tests
* woops
* defaults reflect pixtral image processor
* fixup post merge
* images -> pixel values
* oups sorry Mr docbuilder
* isort
* fix
* fix processor tests
* small fixes
* nit
* update
* last nits
* oups this was really breaking!
* nits
* is composition needs to be true
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix long seq bug
* fixed format
* fixed fn copy inconsistency
* fix long seq bug
* fixed format
* fixed fn copy inconsistency
* Addressed comments
* added a unit test
* fixed cache position
* Added a warning msg to the forward fn
* fixed test case
* test(tokenizers): add a test showing conflict with sentencepiece
This is due to the fact that protobuf C implementation uses a global
pool for all added descriptors, so if two different files add
descriptors, they will end up conflicting.
* fix(tokenizers): mitigate sentencepiece/protobuf conflict
When sentencepiece is available, use that protobuf instead of the
internal one.
* chore(style): fix with ruff
* Update tokenization_whisper.py
Fix issue with flax whisper model
* Update tokenization_whisper_fast.py
Fix issue with flax whisper model
* Update tokenization_whisper.py
just check len of token_ids
* Update tokenization_whisper_fast.py
just use len of token_ids
* Update tokenization_whisper_fast.py and revert changes in _strip_prompt and add support to jax arrays in _convert_to_list
* Update tokenization_whisper.py and revert changes in _strip_prompt and add support to jax arrays in _convert_to_list
* Update test_tokenization_whisper.py to add test for _convert_to_list method
* Update test_tokenization_whisper.py to fix code style issues
* Fix code style
* Fix code check again
* Update test_tokenization)whisper.py to Improve code style
* Update test_tokenization_whisper.py to run each of jax, tf and flax modules if available
* Update tests/models/whisper/test_tokenization_whisper.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update test_tokenization_whisper.py and use require_xxx decorators instead of `is_xxx_available()` method
* Revert the changes automatically applied by formatter and was unrelated to PR
* Format for minimal changes
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add tests for linear shape behavior
* fix linear shape behavior
ended up adding the reshape at the end, after f8f8bf16_rowwise, because adding
it directly after quantize_fp8_per_row caused f8f8bf16_rowwise to drop the
seq_len dimension. (i.e., (17, 23, 1014) -> (17, 1024))
* save shape up front + comment
* Make StaticCache configurable at model construct time
* integrations import structure
* add new doc file to toc
---------
Co-authored-by: Guang Yang <guangyang@fb.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
* Update docs for GGUF supported models
* Add tensor mappings and define class GGUFPhi3Converter
* Fix tokenizer
* Working version
* Attempt to fix some CI failures
* Run ruff format
* Add vocab, merges, decoder methods like LlamaConverter
* Resolve conflicts since Qwen2Moe was added to gguf
- I missed one place when resolving conflict
- I also made a mistake with tests_ggml.py and now has been fixed to reflect
its master version.
* Import structure & first three model refactors
* Register -> Export. Export all in __all__. Sensible defaults according to filename.
* Apply most comments from Amy and some comments from Lucain
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lucain Pouget <lucainp@gmail.com>
* Style
* Add comment
* Clearer .py management
* Raise if not in backend mapping
* More specific type
* More efficient listdir
* Misc fixes
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lucain Pouget <lucainp@gmail.com>
* add self.head_dim for VisionAttention in Qwen2-VL
* add self.head_dim for VisionAttention in Qwen2-VL
* fix ci
* black the test_modeling_qwen2_vl.py
* use ruff to format test_modeling_qwen2_vl.py
* [run-slow] qwen2_vl
* use tying for python3.8
* fix the import format
* use ruff to fix the ci error I001
* [run-slow] qwen2_vl
* remove unused import
* commit for rebase
* use ruff fix ci
* [run-slow] qwen2_vl
---------
Co-authored-by: root <liji>
* Add validation for maximum sequence length in modeling_whisper.py
Added a validation check to ensure that the sequence length of labels does not exceed the maximum allowed length of 448 tokens. If the sequence length exceeds this limit, a ValueError is raised with a descriptive error message.
This change prevents the model from encountering errors or unexpected behavior due to excessively long sequences during training or fine-tuning, ensuring consistent input dimensions and improving overall robustness.
* Change exception message in src/transformers/models/whisper/modeling_whisper.py
The exception message is for whisper's label's sequence max length.
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* Change 448 to config.max_target_positions in src/transformers/models/whisper/modeling_whisper.py
It's for whisper's config.max_target_positions.
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* Change method's documentation in src/transformers/models/whisper/modeling_whisper.py
* Add test for maximum label's sequence length in test_modeling_whisper.py
* Add self to modeling_whisper.py
* Update test_modeling_whisper.py with respect to automatic validations
* Update modeling_whisper.py with respect to ci/circleci: check_code_quality
* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality
* Update test_modeling_whisper.py with respect to ci/circleci: tests_generate
* Update test_modeling_whisper.py with respect to ci/circleci: tests_generate
* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality
* Separate test_labels_sequence_max_length tests in test_modeling_whisper.py
* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality
* Remove assert from test_modeling_whisper.py
* Add max_target_positions to WhisperModelTester in test_modeling_whisper.py
* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality
* Update test_modeling_whisper.py with respect to ci/circleci: tests_generate
* Update test_modeling_whisper.py
* Change test_labels_sequence_max_length_error_after_changing_config in test_modeling_whisper.py
* Change self.config.max_target_positions to self.max_target_positions modeling_whisper.py
* Add new tests in test_modeling_whisper.py
* Update test_modeling_whisper.py
---------
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
* Load remote code only once
* Use hash as load indicator
* Add a new option `force_reload` for old behavior (i.e. always reload)
* Add test for dynamic module is cached
* Add more type annotations to improve code readability
* Address comments from code review
* Add validate images and test processing utils
* Remove encoded text from possible inputs in tests
* Removed encoded inputs as valid in processing_utils
* change text input check to be recursive
* change text check to all element of lists and not just the first one in recursive checks
* [InstructBLIP] qformer_tokenizer is required input
* Bit safer
* Add to instructblipvideo processor
* Fix up
* Use video inputs
* Update tests/models/instructblipvideo/test_processor_instructblipvideo.py
* Fixing a bug in the way "attention_factor" is validated in ROPE utilities.
* Fixing a bug in the way "attention_factor" is validated in ROPE utilities.
* Fixing a bug in the way "attention_factor" is validated in ROPE utilities.
* use gguf internal dequantize
* add Q5_0 test
* add iq1 test
* add remained test
* remove duplicated test
* update docs
* add gguf version limit
* make style
* update gguf import catch
* revert vocab_size patch
* make style
* use GGUF_MIN_VERSION everywhere
* remove to restiction for 4-bit model
* Update src/transformers/modeling_utils.py
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* bitsandbytes: prevent dtype casting while allowing device movement with .to or .cuda
* quality fix
* Improve warning message for .to() and .cuda() on bnb quantized models
---------
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
* don't run custom when not needed?
* update test fetcher filtering
* fixup and updates
* update
* update
* reduce burden
* nit
* nit
* mising comma
* this?
* this?
* more parallelism
* more
* nit for real parallelism on tf and torch examples
* update
* update
* update
* update
* update
* update
* update
* update
* update
* update
* update
* update
* update to make it more custom
* update to make it more custom
* update to make it more custom
* update to make it more custom
* update
* update
* update
* update
* update
* update
* use correct path
* fix path to test files and examples
* filter-tests
* filter?
* filter?
* filter?
* nits
* fix naming of the artifacts to be pushed
* list vs files
* list vs files
* fixup
* fix list of all tests
* fix the install steps
* fix the install steps
* fix the config
* fix the config
* only split if needed
* only split if needed
* extend should fix it
* extend should fix it
* arg
* arg
* update
* update
* run tests
* run tests
* run tests
* more nits
* update
* update
* update
* update
* update
* update
* update
* simpler way to show the test, reduces the complexity of the generated config
* simpler way to show the test, reduces the complexity of the generated config
* style
* oups
* oups
* fix import errors
* skip some tests for now
* update doctestjob
* more parallelism
* fixup
* test only the test in examples
* test only the test in examples
* nits
* from Arthur
* fix generated congi
* update
* update
* show tests
* oups
* oups
* fix torch job for now
* use single upload setp
* oups
* fu**k
* fix
* nit
* update
* nit
* fix
* fixes
* [test-all]
* add generate marker and generate job
* oups
* torch job runs not generate tests
* let repo utils test all utils
* UPdate
* styling
* fix repo utils test
* more parallel please
* don't test
* update
* bit more verbose sir
* more
* hub were skipped
* split by classname
* revert
* maybe?
* Amazing catch
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* fix
* update
* update
* maybe non capturing
* manual convert?
* pass artifacts as parameters as otherwise the config is too long
* artifact.json
* store output
* might not be safe?
* my token
* mmm?
* use CI job IS
* can't get a proper id?
* ups
* build num
* update
* echo url
* this?
* this!
* fix
* wget
* ish
* dang
* udpdate
* there we go
* update
* update
* pass all
* not .txt
* update
* fetcg
* fix naming
* fix
* up
* update
* update
* ??
* update
* more updates
* update
* more
* skip
* oups
* pr documentation tests are currently created differently
* update
* hmmmm
* oups
* curl -L
* update
* ????
* nit
* mmmm
* ish
* ouf
* update
* ish
* update
* update
* updatea
* nit
* nit
* up
* oups
* documentation_test fix
* test hub tests everything, just marker
* update
* fix
* test_hub is the only annoying one now
* tf threads?
* oups
* not sure what is happening?
* fix?
* just use folder for stating hub
* I am getting fucking annoyed
* fix the test?
* update
* uupdate
* ?
* fixes
* add comment!
* nit
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Adding SDPA support for RoBERTa-based models
* add not is_cross_attention
* fix copies
* fix test
* add minimal test for camembert and xlm_roberta as their test class does not inherit from ModelTesterMixin
* address some review comments
* use copied from
* style
* consistency
* fix lists
---------
Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* init fix
* fix mask during cached forward, move mask related stuff to own function
* adjust tests as left padding does not change logits as much anymore + batch gen (with todo on logits comp)
* revert overwriting new integration tests
* move some comments to docstring
* add Blip2ForImageTextRetrieval
* use one line and remove unnecessary space in tests
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* use value from the config, rather than hardcoded
* change order of params in Blip2QFormerModel.forward
* update docstring
* fix style
* update test_inference_opt
* move embeddings out of Blip2QFormerModel
* remove from_vision_qformer_configs
* remove autocast float16 in Blip2QFormerModel
* rename fiels into vision_projection,text_projection,use_image_text_matching_head
* use CLIPOutput for Blip2ImageTextMatchingModelOutput
* remove past_key_values_length from Blip2TextEmbeddings
* fix small typo in the CLIPOutput docstring
* add Blip2ForImageTextRetrieval to Zero Shot Image Classification mapping
* update docstring and add require_torch_fp16
* rollback test_inference_opt
* use use_image_text_matching_head=True in convert
* skip test_model_get_set_embeddings
* fix create_rename_keys error on new itm fields
* revert to do scale after dot product between "query" and "key"
* fix ValueError on convert script for blip2-opt-2.7b
* update org of paths to Salesforce
* add is_pipeline_test_to_skip for VisualQuestionAnsweringPipelineTests
* [run_slow] blip_2
* removed Blip2ForImageTextRetrieval from IGNORE_NON_AUTO_CONFIGURED
* fix docstring of Blip2ImageTextMatchingModelOutput
* [run_slow] blip_2
* fix multi-gpu tests
* [run_slow] blip_2
* [run_slow] blip_2
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Add a fix for the case when tokenizers are passed as a string
* Support image processors and feature extractors as well
* Reverting load_feature_extractor and load_image_processor
* Add test
* Test is torch-only
* Add tests for preprocessors and feature extractors and move test
* Extremely experimental fix
* Revert that change, wrong branch!
* Typo!
* Split tests
* fix param not being passed in tested; add exceptions
* better source of model name
* Update utils/create_dummy_models.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* fix: multilingual midel convert to tflite get wrong token
* fix: modify test_force_tokens_logits_processor the checking value as scores.dtype.min
---------
Co-authored-by: kent.sc.hung <kent.sc.hung@benq.com>
Co-authored-by: Aya <[kent831217@gmail.com]>
* Add new Jinja features:
- Do extension
- Break/continue in loops
- Call strftime to get current datetime in any format
* Add new Jinja features:
- Do extension
- Break/continue in loops
- Call strftime to get current datetime in any format
* Fix strftime template
* Add template strip() just to be safe
* Remove the do extension to make porting easier, and also because it's the least useful
* Rename test
* strftime -> strftime_now
* Split test
* Update test to use strftime_now
* Refactor everything out into chat_template_utils
* Refactor everything out into chat_template_utils
* Refactor everything out into chat_template_utils
* Refactor everything out into chat_template_utils
* Refactor everything out into chat_template_utils
* Add .float() in all generation methods logit outputs
* Switch float-casting of logits to training only for main models
* Add `num_logits_to_keep` in Llama and add it by default in generate
* Apply style
* Add num_logits_to_keep as arg in prepare_input_for_generation
* Add support for Mistral
* Revert models except llama and mistral
* Fix default None value in _supports_num_logits_to_keep()
* Fix dimension of dummy input
* Add exception for prophetnet in _supports_num_logits_to_keep()
* Update _supports_num_logits_to_keep() to use inspect.signature()
* Add deprecation cycle + remove modification with pretraining_tp
* Apply style
* Add most used models
* Apply style
* Make `num_logits_to_keep` an int in all cases to remove if-else clause
* Add compile check for the warning
* Fix torch versions
* style
* Add gemma2
* Update warning version
* Add comment about .float operations in generation utils
* Add tests in GenerationTesterMixin and ModelTesterMixin
* Fix batch size for assisted decoding in tests
* fix small issues in test
* refacor test
* fix slicing removing dim issue
* Add nemotron support (should fix check-copy issue in CIs)
* Trigger new CIs
* Trigger new CIs
* Bump version
* Bump version in TODO
* Trigger CIs
* remove blank space
* Trigger CIs
* more precise name
* better docstrings
* Update src/transformers/cache_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Add TorchAOHfQuantizer
Summary:
Enable loading torchao quantized model in huggingface.
Test Plan:
local test
Reviewers:
Subscribers:
Tasks:
Tags:
* Fix a few issues
* style
* Added tests and addressed some comments about dtype conversion
* fix torch_dtype warning message
* fix tests
* style
* TorchAOConfig -> TorchAoConfig
* enable offload + fix memory with multi-gpu
* update torchao version requirement to 0.4.0
* better comments
* add torch.compile to torchao README, add perf number link
---------
Co-authored-by: Marc Sun <marc@huggingface.co>
* Add padding="max_length" to tokenizer kwargs and change crop_size to size for image_processor kwargs
* remove crop_size argument in align processor tests to be coherent with base tests
* Add pad_token when loading tokenizer if needed, change test override tokenizer kwargs, remove unnecessary test overwrites in grounding dino
* fix typo
* uniform kwargs
* make style
* add comments
* remove return_tensors
* remove common_kwargs from processor since it propagates
* make style
* return_token_type_ids to True
* revert the default imagekwargs since does not accept any value in the image processro
* revert processing_utils.py
* make style
* add molbap's commit
* fix typo
* fix common processor
* remain
* Revert "add molbap's commit"
This reverts commit a476c6ee88.
* add unsync PR
* revert
* make CI happy
* nit
* import annotationformat
* add new model like
* draft cuda forward - mismatched keys (sharding on conv1)
* match keys successfully
* fix split
* get generation/forward running (wrong gens, norm?)
* :update
* some refactoring
* fixes
* works up until copy to cache
* fix
* update
* NON WORKING VERSION
* version that work?
* nit
* fix config
* fix conversion script
* working cuda forward
* nit
* update
* simplifcation
* make mamba slow simple work
* no einops
* todo
* fix style
* no einops
* update fix no einsum
* nit
* remove einops
* bug: scan_output differs strongly
* add rms norm option
* fix fast + slow generation with and w/o cache ✔️
* draft integration tests
* remove a big chunk of the einsum
* fix slow, fast generations, without any einsum
* fix copies
* fix structure
* fix up modeling and tests
* fix tests
* clamping is indeed worse
* recover mamba2 cache test
* fix copies
* no cache position (yet)
* fix tf tests
* fix matmul for generate
* fixup
* skip cache tests for now
* [run-slow]mamba2
* tune out hidden states for padding
* test batched generation
* propagate attention mask changes
* fix past length
* fix integration test
* style
* address comments
* update readme
* add mamba2 version check
* fix tests
* [run-slow]mamba2
* skip edge tests
* [run-slow]mamba2
* last fixup
* [run-slow]mamba2
* update README
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
* save total_vocab_size = vocab_size + user added tokens to speed up operation
* updating length when added_tokens_decoder is set
* add test len(tokenizer)
* Test this zach
* Test for improper init w/o zero3
* Move back
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Get rid of stars in warning
* Make private
* Make clear
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Initial implementation of OffloadedCache
* enable usage via cache_implementation
* Address feedback, add tests, remove legacy methods.
* Remove flash-attn, discover synchronization bugs, fix bugs
* Prevent usage in CPU only mode
* Add a section about offloaded KV cache to the docs
* Fix typos in docs
* Clarifications and better explanation of streams
* Fix conflicting key in init kwargs in PreTrainedTokenizerBase
* Update code to check for callable key in save_pretrained
* Apply PR suggestions
* Invoke CI
* Updates based on PR suggestion
* Remove user-defined tokens which can be obtained through merges
* Remove debug line
* formatting
* Refactor spm slow -> fast converter
* revert unnecessary refactor
* set comprehension
* remove test files
* Use `vocab_scores`
* Always replace spiece underline with space in decode
* we no longer need token filtering
* Add save fast load slow unit test
* Remove tokenizers version check
* Remove duplicate code
* Make `<start_of_turn>` and `<end_of_turn>` special tokens
* Bias merge priority with length if score is the same
* Add unit test for merge priority
* CI
* mvp
* added test (a few models need fixes)
* fix a few test cases
* test nits
* harder test 😈
* revert changes in stablelm
* test with improved condition
* add todo
* tmp commit
* merged with main
* nits
* add todo
* final corrections
* add docs for generation compilation
* docs nits
* add tip
* PR suggestions
* add more details to the compilation docs
* fix cache positions
* cache is now init in generate; update docs
* tag test as flaky
* docs
* post rebase make fixup and other nits
* remove unintended changes
* whisper (encoder-decoder) not supported
* move token default updates to ; add tests for token defaults
* push changes
* manual rebase
* chameleon doesn't support this
* fix test_static_cache_mha_mqa_gqa (broken in another PR)
* docs: dynamic is better with end-to-end compilation
* No more default chat templates
* Add the template to the GPT-SW3 tests since it's not available by default now
* Fix GPT2 test
* Fix Bloom test
* Fix Bloom test
* Remove default templates again
* Updated ruff version and fixed the required code accorindg to the latest version.
* Updated ruff version and fixed the required code accorindg to the latest version.
* Added noqa directive to ignore 1 error shown by ruff
* add DataCollatorBatchFlattening
* Update data_collator.py
* change name
* new FA2 flow if position_ids is provided
* add comments
* minor fix
* minor fix data collator
* add test cases for models
* add test case for data collator
* remove extra code
* formating for ruff check and check_repo.py
* ruff format
ruff format tests src utils
* custom_init_isort.py
* gguf conversion forces add_prefix_space=False for llama3, this is not required and forces from_slow, which fails. changing to None + test
* typo
* clean test
* Change resize_token_embeddings to make it return same Class that is passed to it
* Add explanatory comment as requested in review
* Add explanatory comments for add resizing function in lxmert
* Add comment for padding_idx and moving _resize_bias in lxmert to LxmertForPreTraining
---------
Co-authored-by: Prashanth Sateesh <prasatee@Prashanths-MBP.attlocal.net>
Co-authored-by: Prashanth Sateesh <prasatee@Prashanths-MacBook-Pro.local>
* Add YaRN and Dynamic-YaRN RoPE Scaling Methods
YaRN (Yet another RoPE extension method) combines the NTK-By-Parts
Interpolation and Attention Scaling methods, improving upon existing
RoPE interpolation methods for longer context window sizes.
Fine-tuned models maintain their original performance across benchmarks
while enabling efficient extrapolation and transfer learning for
quicker convergence, especially in compute-limited environments.
We implement YaRN and Dynamic-YaRN for the following list of models:
- LLaMA
- Falcon
- GPT-NeoX
- Olmo
- Persimmon
- Phi
- StableLM
- OpenLLaMA
New unit tests are added to assert YaRN's correct behavior on both
short and long sequence inputs.
For more details, please refer to https://arxiv.org/abs/2309.00071.
Co-authored-by: Miguel Almeida <miguel.pessanha.almeida@tecnico.ulisboa.pt>
* Refactor YaRN implementation for LLaMA
Iterate on YaRN implementation for LLaMA and remove diff from remaining
models for increased PR modularity.
This commit includes the following changes:
- Merge 'yarn_rope_scaling' and 'rope_scaling' dictionaries
- Remove unnecessary attributes ('extrapolation_factor' and 'finetuned')
from YaRN classes
- Inherit 'forward' method in YaRN classes from superclass
- Rename 'yarn' method to 'compute_yarn_scaling'
- Extend YaRN tests with further assertions
- Fix style inconsistencies
Co-authored-by: Miguel Monte e Freitas <miguelmontefreitas@tecnico.ulisboa.pt>
* Refactor Tensor Building Logic for YaRN
- Comply with the the tensor building logic introduced in #30743
- Add referencing to the optimized Attention Factor equation
- Remove Dynamic YaRN for a more agile deployment
Co-authored-by: mig-mfreitas <mig-mfreitas@users.noreply.github.com>
* remove unwanted file
---------
Co-authored-by: Miguel Almeida <miguel.pessanha.almeida@tecnico.ulisboa.pt>
Co-authored-by: mig-mfreitas <mig-mfreitas@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
* fix mask creation of gpt2 and gpt_neox caused by me
* forgot the reshape of masks when shape > 2
* add tests for gpt neox and gpt2
* nit on a comment
* add language to words
_collate_word_timestamps uses the return_language flag to determine whether the language of the chunk should be added to the word's information
* ran style checks
added missing comma
* add new language test
test that the pipeline can return both the language and timestamp
* remove model configuration in test
Removed model configurations that do not influence test results
* remove model configuration in test
Removed model configurations that do not influence test results
* 1,100%!
* Clean
* Don't touch DS
* Experiment with dtype allocation
* skip test_load_save_without_tied_weights test
* A little faster
* Include proper upscaling?
* Fixup tests
* Potentially skip?
* Let's see if this fixes git history
* Maintain new dtype
* Fin
* Rm hook idea for now
* New approach, see what breaks
* stage
* Clean
* Stash
* Should be fin now, just need to mark failing models
* Clean up
* Simplify
* Deal with weird models
* Enc/Dec
* Skip w/ reason
* Adjust test
* Fix test
* one more test
* Keep experimenting
* Fix ref
* TO REMOVE: testing feedback CI
* Right push
* Update tests/utils/test_modeling_utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* disable
* Add new func
* Test nits from Amy
* Update src/transformers/modeling_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Adjust comment
* Adjust comment on skip
* make private
* Fin
* Should be a not flag
* Clarify and rename test
---------
Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Fix the incorrect permutation of gguf
* rename num_kv_heads
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* add typing to num_kv_heads
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* rename variables
* refactor permute function name
* update the expected text of the llama3 q4 test
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* tmp commit
* shorter
* nit
* explicit kwargs
* propagate changes
* mass propagation with a few manual touches (let's see how CI behaves)
* fix cacheless case
* Update src/transformers/generation/utils.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* make fixup
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>