mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
fix: Fixed raising TypeError
instead of ValueError
for invalid type (#32111)
* Raised TypeError instead of ValueError for invalid types. * Updated formatting using ruff. * Retrieved few changes. * Retrieved few changes. * Updated tests accordingly.
This commit is contained in:
parent
d1ec36b94f
commit
12b6880c81
@ -59,7 +59,7 @@ class GroupedBatchSampler(BatchSampler):
|
||||
|
||||
def __init__(self, sampler, group_ids, batch_size):
|
||||
if not isinstance(sampler, Sampler):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"sampler should be an instance of torch.utils.data.Sampler, but got sampler={}".format(sampler)
|
||||
)
|
||||
self.sampler = sampler
|
||||
|
@ -48,7 +48,7 @@ def convert_to_float(value):
|
||||
if isinstance(value, int):
|
||||
return float(value)
|
||||
if not isinstance(value, str):
|
||||
raise ValueError("Argument value is not a string. Can't parse it as float")
|
||||
raise TypeError("Argument value is not a string. Can't parse it as float")
|
||||
sanitized = value
|
||||
|
||||
try:
|
||||
@ -158,7 +158,7 @@ def _respect_conditions(table, row, conditions):
|
||||
cmp_value = _normalize_for_match(cmp_value)
|
||||
|
||||
if not isinstance(table_value, type(cmp_value)):
|
||||
raise ValueError("Type difference {} != {}".format(type(table_value), type(cmp_value)))
|
||||
raise TypeError("Type difference {} != {}".format(type(table_value), type(cmp_value)))
|
||||
|
||||
if not _compare(cond.operator, table_value, cmp_value):
|
||||
return False
|
||||
|
@ -107,7 +107,7 @@ class AgentImage(AgentType, ImageType):
|
||||
elif isinstance(value, np.ndarray):
|
||||
self._tensor = torch.tensor(value)
|
||||
else:
|
||||
raise ValueError(f"Unsupported type for {self.__class__.__name__}: {type(value)}")
|
||||
raise TypeError(f"Unsupported type for {self.__class__.__name__}: {type(value)}")
|
||||
|
||||
def _ipython_display_(self, include=None, exclude=None):
|
||||
"""
|
||||
|
@ -1004,7 +1004,7 @@ class PretrainedConfig(PushToHubMixin):
|
||||
elif isinstance(old_v, float):
|
||||
v = float(v)
|
||||
elif not isinstance(old_v, str):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
f"You can only update int, float, bool or string values in the config, got {v} for key {k}"
|
||||
)
|
||||
|
||||
|
@ -47,11 +47,11 @@ class XnliProcessor(DataProcessor):
|
||||
text_b = line[1]
|
||||
label = "contradiction" if line[2] == "contradictory" else line[2]
|
||||
if not isinstance(text_a, str):
|
||||
raise ValueError(f"Training input {text_a} is not a string")
|
||||
raise TypeError(f"Training input {text_a} is not a string")
|
||||
if not isinstance(text_b, str):
|
||||
raise ValueError(f"Training input {text_b} is not a string")
|
||||
raise TypeError(f"Training input {text_b} is not a string")
|
||||
if not isinstance(label, str):
|
||||
raise ValueError(f"Training label {label} is not a string")
|
||||
raise TypeError(f"Training label {label} is not a string")
|
||||
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
@ -70,11 +70,11 @@ class XnliProcessor(DataProcessor):
|
||||
text_b = line[7]
|
||||
label = line[1]
|
||||
if not isinstance(text_a, str):
|
||||
raise ValueError(f"Training input {text_a} is not a string")
|
||||
raise TypeError(f"Training input {text_a} is not a string")
|
||||
if not isinstance(text_b, str):
|
||||
raise ValueError(f"Training input {text_b} is not a string")
|
||||
raise TypeError(f"Training input {text_b} is not a string")
|
||||
if not isinstance(label, str):
|
||||
raise ValueError(f"Training label {label} is not a string")
|
||||
raise TypeError(f"Training label {label} is not a string")
|
||||
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
||||
return examples
|
||||
|
||||
|
@ -156,7 +156,7 @@ class PhrasalConstraint(Constraint):
|
||||
|
||||
def does_advance(self, token_id: int):
|
||||
if not isinstance(token_id, int):
|
||||
raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
|
||||
raise TypeError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
|
||||
|
||||
if self.completed:
|
||||
return False
|
||||
@ -165,7 +165,7 @@ class PhrasalConstraint(Constraint):
|
||||
|
||||
def update(self, token_id: int):
|
||||
if not isinstance(token_id, int):
|
||||
raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
|
||||
raise TypeError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}")
|
||||
|
||||
stepped = False
|
||||
completed = False
|
||||
@ -300,7 +300,7 @@ class DisjunctiveConstraint(Constraint):
|
||||
|
||||
def does_advance(self, token_id: int):
|
||||
if not isinstance(token_id, int):
|
||||
raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
|
||||
raise TypeError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
|
||||
|
||||
next_tokens = self.trie.next_tokens(self.current_seq)
|
||||
|
||||
@ -308,7 +308,7 @@ class DisjunctiveConstraint(Constraint):
|
||||
|
||||
def update(self, token_id: int):
|
||||
if not isinstance(token_id, int):
|
||||
raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
|
||||
raise TypeError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}")
|
||||
|
||||
stepped = False
|
||||
completed = False
|
||||
@ -432,7 +432,7 @@ class ConstraintListState:
|
||||
|
||||
def add(self, token_id: int):
|
||||
if not isinstance(token_id, int):
|
||||
raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`.")
|
||||
raise TypeError(f"`token_id` should be an `int`, but is `{token_id}`.")
|
||||
|
||||
complete, stepped = False, False
|
||||
|
||||
|
@ -4281,7 +4281,7 @@ def _split(data, full_batch_size: int, split_size: int = None):
|
||||
for i in range(0, full_batch_size, split_size)
|
||||
]
|
||||
else:
|
||||
raise ValueError(f"Unexpected attribute type: {type(data)}")
|
||||
raise TypeError(f"Unexpected attribute type: {type(data)}")
|
||||
|
||||
|
||||
def _split_model_inputs(
|
||||
@ -4388,7 +4388,7 @@ def stack_model_outputs(model_outputs: List[ModelOutput]) -> ModelOutput:
|
||||
# If the elements are integers or floats, return a tensor
|
||||
return torch.tensor(data)
|
||||
else:
|
||||
raise ValueError(f"Unexpected attribute type: {type(data[0])}")
|
||||
raise TypeError(f"Unexpected attribute type: {type(data[0])}")
|
||||
|
||||
# Use a dictionary comprehension to gather attributes from all objects and concatenate them
|
||||
concatenated_data = {
|
||||
|
@ -544,7 +544,7 @@ class ImageProcessingMixin(PushToHubMixin):
|
||||
response.raise_for_status()
|
||||
return Image.open(BytesIO(response.content))
|
||||
else:
|
||||
raise ValueError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}")
|
||||
raise TypeError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}")
|
||||
|
||||
|
||||
ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub)
|
||||
|
@ -75,7 +75,7 @@ def to_channel_dimension_format(
|
||||
`np.ndarray`: The image with the channel dimension set to `channel_dim`.
|
||||
"""
|
||||
if not isinstance(image, np.ndarray):
|
||||
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
|
||||
raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
|
||||
|
||||
if input_channel_dim is None:
|
||||
input_channel_dim = infer_channel_dimension_format(image)
|
||||
@ -121,7 +121,7 @@ def rescale(
|
||||
`np.ndarray`: The rescaled image.
|
||||
"""
|
||||
if not isinstance(image, np.ndarray):
|
||||
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
|
||||
raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
|
||||
|
||||
rescaled_image = image * scale
|
||||
if data_format is not None:
|
||||
@ -453,7 +453,7 @@ def center_crop(
|
||||
return_numpy = True if return_numpy is None else return_numpy
|
||||
|
||||
if not isinstance(image, np.ndarray):
|
||||
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
|
||||
raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
|
||||
|
||||
if not isinstance(size, Iterable) or len(size) != 2:
|
||||
raise ValueError("size must have 2 elements representing the height and width of the output image")
|
||||
|
@ -377,7 +377,7 @@ def load_image(image: Union[str, "PIL.Image.Image"], timeout: Optional[float] =
|
||||
elif isinstance(image, PIL.Image.Image):
|
||||
image = image
|
||||
else:
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"Incorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image."
|
||||
)
|
||||
image = PIL.ImageOps.exif_transpose(image)
|
||||
|
@ -199,7 +199,7 @@ def get_modules_to_fuse(model, quantization_config):
|
||||
The quantization configuration to use.
|
||||
"""
|
||||
if not isinstance(model, PreTrainedModel):
|
||||
raise ValueError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}")
|
||||
raise TypeError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}")
|
||||
|
||||
# Always default to `quantization_config.modules_to_fuse`
|
||||
if quantization_config.modules_to_fuse is not None:
|
||||
|
@ -262,9 +262,7 @@ class PeftAdapterMixin:
|
||||
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
|
||||
|
||||
if not isinstance(adapter_config, PeftConfig):
|
||||
raise ValueError(
|
||||
f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
|
||||
)
|
||||
raise TypeError(f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead.")
|
||||
|
||||
# Retrieve the name or path of the model, one could also use self.config._name_or_path
|
||||
# but to be consistent with what we do in PEFT: https://github.com/huggingface/peft/blob/6e783780ca9df3a623992cc4d1d665001232eae0/src/peft/mapping.py#L100
|
||||
|
@ -1209,7 +1209,7 @@ class TFPreTrainedModel(keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushT
|
||||
def __init__(self, config, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
if not isinstance(config, PretrainedConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
|
||||
"`PretrainedConfig`. To create a model from a pretrained model use "
|
||||
f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
||||
|
@ -1418,13 +1418,13 @@ class AlignModel(AlignPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, AlignTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type AlignTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, AlignVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type AlignVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -1466,12 +1466,12 @@ class AltCLIPModel(AltCLIPPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.vision_config, AltCLIPVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type AltCLIPVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
if not isinstance(config.text_config, AltCLIPTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type AltCLIPTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
@ -211,7 +211,7 @@ class BarkProcessor(ProcessorMixin):
|
||||
raise ValueError(f"Voice preset unrecognized, missing {key} as a key.")
|
||||
|
||||
if not isinstance(voice_preset[key], np.ndarray):
|
||||
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
|
||||
raise TypeError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
|
||||
|
||||
if len(voice_preset[key].shape) != self.preset_shape[key]:
|
||||
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.")
|
||||
|
@ -755,13 +755,13 @@ class BlipModel(BlipPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, BlipTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type BlipTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, BlipVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type BlipVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -794,13 +794,13 @@ class TFBlipMainLayer(keras.layers.Layer):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
if not isinstance(config.text_config, BlipTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type BlipTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, BlipVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type BlipVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -113,7 +113,7 @@ class ChameleonProcessor(ProcessorMixin):
|
||||
if isinstance(text, str):
|
||||
text = [text]
|
||||
elif not isinstance(text, list) and not isinstance(text[0], str):
|
||||
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
||||
raise TypeError("Invalid input text. Please provide a string, or a list of strings")
|
||||
|
||||
# Replace the image token with the expanded image token sequence
|
||||
prompt_strings = []
|
||||
|
@ -1341,13 +1341,13 @@ class ChineseCLIPModel(ChineseCLIPPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, ChineseCLIPTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -1928,13 +1928,13 @@ class ClapModel(ClapPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, ClapTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type ClapTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.audio_config, ClapAudioConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.audio_config is expected to be of type ClapAudioConfig but is of type"
|
||||
f" {type(config.audio_config)}."
|
||||
)
|
||||
|
@ -1119,13 +1119,13 @@ class CLIPModel(CLIPPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, CLIPTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type CLIPTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, CLIPVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -825,13 +825,13 @@ class TFCLIPMainLayer(keras.layers.Layer):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
if not isinstance(config.text_config, CLIPTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type CLIPTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, CLIPVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -924,13 +924,13 @@ class CLIPSegModel(CLIPSegPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, CLIPSegTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type CLIPSegTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, CLIPSegVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type CLIPSegVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -1513,19 +1513,19 @@ class ClvpModelForConditionalGeneration(ClvpPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, ClvpEncoderConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type `ClvpEncoderConfig` but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.speech_config, ClvpEncoderConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.speech_config is expected to be of type `ClvpEncoderConfig` but is of type"
|
||||
f" {type(config.speech_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.decoder_config, ClvpDecoderConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.decoder_config is expected to be of type `ClvpDecoderConfig` but is of type"
|
||||
f" {type(config.decoder_config)}."
|
||||
)
|
||||
|
@ -518,4 +518,4 @@ def convert_to_unicode(text):
|
||||
elif isinstance(text, bytes):
|
||||
return text.decode("utf-8", "ignore")
|
||||
else:
|
||||
raise ValueError(f"Unsupported string type: {type(text)}")
|
||||
raise TypeError(f"Unsupported string type: {type(text)}")
|
||||
|
@ -298,7 +298,7 @@ class DepthAnythingNeck(nn.Module):
|
||||
List of hidden states from the backbone.
|
||||
"""
|
||||
if not isinstance(hidden_states, (tuple, list)):
|
||||
raise ValueError("hidden_states should be a tuple or list of tensors")
|
||||
raise TypeError("hidden_states should be a tuple or list of tensors")
|
||||
|
||||
if len(hidden_states) != len(self.config.neck_hidden_sizes):
|
||||
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")
|
||||
|
@ -1002,7 +1002,7 @@ class DPTNeck(nn.Module):
|
||||
List of hidden states from the backbone.
|
||||
"""
|
||||
if not isinstance(hidden_states, (tuple, list)):
|
||||
raise ValueError("hidden_states should be a tuple or list of tensors")
|
||||
raise TypeError("hidden_states should be a tuple or list of tensors")
|
||||
|
||||
if len(hidden_states) != len(self.config.neck_hidden_sizes):
|
||||
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")
|
||||
|
@ -32,7 +32,7 @@ def _fetch_dims(tree: Union[dict, list, tuple, torch.Tensor]) -> List[Tuple[int,
|
||||
elif isinstance(tree, torch.Tensor):
|
||||
shapes.append(tree.shape)
|
||||
else:
|
||||
raise ValueError("Not supported")
|
||||
raise TypeError("Not supported")
|
||||
|
||||
return shapes
|
||||
|
||||
@ -302,7 +302,7 @@ def chunk_layer(
|
||||
else:
|
||||
out[i : i + chunk_size] = output_chunk
|
||||
else:
|
||||
raise ValueError("Not supported")
|
||||
raise TypeError("Not supported")
|
||||
|
||||
i += chunk_size
|
||||
|
||||
|
@ -394,7 +394,7 @@ def map_structure_with_atom_order(in_list: list, first_call: bool = True) -> lis
|
||||
elif isinstance(in_list[i], str):
|
||||
in_list[i] = atom_order[in_list[i]]
|
||||
else:
|
||||
raise ValueError("Unexpected type when mapping nested lists!")
|
||||
raise TypeError("Unexpected type when mapping nested lists!")
|
||||
return in_list
|
||||
|
||||
|
||||
|
@ -134,7 +134,7 @@ def tree_map(fn, tree, leaf_type):
|
||||
return fn(tree)
|
||||
else:
|
||||
print(type(tree))
|
||||
raise ValueError("Not supported")
|
||||
raise TypeError("Not supported")
|
||||
|
||||
|
||||
tensor_tree_map = partial(tree_map, leaf_type=torch.Tensor)
|
||||
|
@ -1181,19 +1181,19 @@ class FlavaModel(FlavaPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, FlavaTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type FlavaTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.image_config, FlavaImageConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.image_config is expected to be of type FlavaImageConfig but is of type"
|
||||
f" {type(config.image_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.multimodal_config, FlavaMultimodalConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.multimodal_config is expected to be of type FlavaMultimodalConfig but "
|
||||
+ f"is of type {type(config.multimodal_config)}."
|
||||
)
|
||||
|
@ -1302,13 +1302,13 @@ class GroupViTModel(GroupViTPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, GroupViTTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type GroupViTTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, GroupViTVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type GroupViTVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -1443,13 +1443,13 @@ class TFGroupViTMainLayer(keras.layers.Layer):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
if not isinstance(config.text_config, GroupViTTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type GroupViTTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, GroupViTVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type GroupViTVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -513,7 +513,7 @@ class LlavaNextImageProcessor(BaseImageProcessor):
|
||||
List[np.array]: A list of NumPy arrays containing the processed image patches.
|
||||
"""
|
||||
if not isinstance(grid_pinpoints, list):
|
||||
raise ValueError("grid_pinpoints must be a list of possible resolutions.")
|
||||
raise TypeError("grid_pinpoints must be a list of possible resolutions.")
|
||||
|
||||
possible_resolutions = grid_pinpoints
|
||||
|
||||
|
@ -60,12 +60,12 @@ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
||||
tuple: The shape of the image patch grid in the format (width, height).
|
||||
"""
|
||||
if not isinstance(grid_pinpoints, list):
|
||||
raise ValueError("grid_pinpoints should be a list of tuples or lists")
|
||||
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
||||
|
||||
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
||||
if not isinstance(image_size, (list, tuple)):
|
||||
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
||||
)
|
||||
image_size = image_size.tolist()
|
||||
@ -91,12 +91,12 @@ def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
|
||||
int: the number of patches
|
||||
"""
|
||||
if not isinstance(grid_pinpoints, list):
|
||||
raise ValueError("grid_pinpoints should be a list of tuples or lists")
|
||||
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
||||
|
||||
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
||||
if not isinstance(image_size, (list, tuple)):
|
||||
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
||||
raise ValueError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
||||
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
||||
image_size = image_size.tolist()
|
||||
|
||||
best_resolution = select_best_resolution(image_size, grid_pinpoints)
|
||||
|
@ -66,12 +66,12 @@ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
||||
tuple: The shape of the image patch grid in the format (width, height).
|
||||
"""
|
||||
if not isinstance(grid_pinpoints, list):
|
||||
raise ValueError("grid_pinpoints should be a list of tuples or lists")
|
||||
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
||||
|
||||
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
||||
if not isinstance(image_size, (list, tuple)):
|
||||
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
||||
)
|
||||
image_size = image_size.tolist()
|
||||
@ -97,12 +97,12 @@ def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
|
||||
int: the number of patches
|
||||
"""
|
||||
if not isinstance(grid_pinpoints, list):
|
||||
raise ValueError("grid_pinpoints should be a list of tuples or lists")
|
||||
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
||||
|
||||
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
||||
if not isinstance(image_size, (list, tuple)):
|
||||
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
||||
raise ValueError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
||||
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
||||
image_size = image_size.tolist()
|
||||
|
||||
best_resolution = select_best_resolution(image_size, grid_pinpoints)
|
||||
|
@ -889,7 +889,7 @@ class LukeTokenizer(PreTrainedTokenizer):
|
||||
|
||||
def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]):
|
||||
if not isinstance(entity_spans, list):
|
||||
raise ValueError("entity_spans should be given as a list")
|
||||
raise TypeError("entity_spans should be given as a list")
|
||||
elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple):
|
||||
raise ValueError(
|
||||
"entity_spans should be given as a list of tuples containing the start and end character indices"
|
||||
|
@ -721,7 +721,7 @@ class MLukeTokenizer(PreTrainedTokenizer):
|
||||
# Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._check_entity_input_format
|
||||
def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]):
|
||||
if not isinstance(entity_spans, list):
|
||||
raise ValueError("entity_spans should be given as a list")
|
||||
raise TypeError("entity_spans should be given as a list")
|
||||
elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple):
|
||||
raise ValueError(
|
||||
"entity_spans should be given as a list of tuples containing the start and end character indices"
|
||||
|
@ -1015,13 +1015,13 @@ class Owlv2Model(Owlv2PreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, Owlv2TextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type Owlv2TextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, Owlv2VisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type Owlv2VisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -998,13 +998,13 @@ class OwlViTModel(OwlViTPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, OwlViTTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type OwlViTTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, OwlViTVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type OwlViTVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -204,7 +204,7 @@ class HFIndexBase(Index):
|
||||
|
||||
def _check_dataset_format(self, with_index: bool):
|
||||
if not isinstance(self.dataset, Dataset):
|
||||
raise ValueError(f"Dataset should be a datasets.Dataset object, but got {type(self.dataset)}")
|
||||
raise TypeError(f"Dataset should be a datasets.Dataset object, but got {type(self.dataset)}")
|
||||
if len({"title", "text", "embeddings"} - set(self.dataset.column_names)) > 0:
|
||||
raise ValueError(
|
||||
"Dataset should be a dataset with the following columns: "
|
||||
|
@ -1202,13 +1202,13 @@ class SiglipModel(SiglipPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, SiglipTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type SiglipTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, SiglipVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type SiglipVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -135,7 +135,7 @@ class UdopConfig(PretrainedConfig):
|
||||
self.patch_size = patch_size
|
||||
self.num_channels = num_channels
|
||||
if not isinstance(relative_bias_args, list):
|
||||
raise ValueError("`relative_bias_args` should be a list of dictionaries.")
|
||||
raise TypeError("`relative_bias_args` should be a list of dictionaries.")
|
||||
self.relative_bias_args = relative_bias_args
|
||||
|
||||
act_info = self.feed_forward_proj.split("-")
|
||||
|
@ -92,7 +92,7 @@ class Wav2Vec2ProcessorWithLM(ProcessorMixin):
|
||||
|
||||
super().__init__(feature_extractor, tokenizer)
|
||||
if not isinstance(decoder, BeamSearchDecoderCTC):
|
||||
raise ValueError(f"`decoder` has to be of type {BeamSearchDecoderCTC.__class__}, but is {type(decoder)}")
|
||||
raise TypeError(f"`decoder` has to be of type {BeamSearchDecoderCTC.__class__}, but is {type(decoder)}")
|
||||
|
||||
if feature_extractor.__class__.__name__ not in ["Wav2Vec2FeatureExtractor", "SeamlessM4TFeatureExtractor"]:
|
||||
raise ValueError(
|
||||
|
@ -1242,13 +1242,13 @@ class XCLIPModel(XCLIPPreTrainedModel):
|
||||
super().__init__(config)
|
||||
|
||||
if not isinstance(config.text_config, XCLIPTextConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.text_config is expected to be of type XCLIPTextConfig but is of type"
|
||||
f" {type(config.text_config)}."
|
||||
)
|
||||
|
||||
if not isinstance(config.vision_config, XCLIPVisionConfig):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
"config.vision_config is expected to be of type XCLIPVisionConfig but is of type"
|
||||
f" {type(config.vision_config)}."
|
||||
)
|
||||
|
@ -334,7 +334,7 @@ class ZoeDepthNeck(nn.Module):
|
||||
List of hidden states from the backbone.
|
||||
"""
|
||||
if not isinstance(hidden_states, (tuple, list)):
|
||||
raise ValueError("hidden_states should be a tuple or list of tensors")
|
||||
raise TypeError("hidden_states should be a tuple or list of tensors")
|
||||
|
||||
if len(hidden_states) != len(self.config.neck_hidden_sizes):
|
||||
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")
|
||||
|
@ -190,7 +190,7 @@ class AudioClassificationPipeline(Pipeline):
|
||||
).numpy()
|
||||
|
||||
if not isinstance(inputs, np.ndarray):
|
||||
raise ValueError("We expect a numpy ndarray as input")
|
||||
raise TypeError("We expect a numpy ndarray as input")
|
||||
if len(inputs.shape) != 1:
|
||||
raise ValueError("We expect a single channel audio input for AudioClassificationPipeline")
|
||||
|
||||
|
@ -406,7 +406,7 @@ class AutomaticSpeechRecognitionPipeline(ChunkPipeline):
|
||||
# of the original length in the stride so we can cut properly.
|
||||
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
|
||||
if not isinstance(inputs, np.ndarray):
|
||||
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
|
||||
raise TypeError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
|
||||
if len(inputs.shape) != 1:
|
||||
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")
|
||||
|
||||
|
@ -114,7 +114,7 @@ class ZeroShotAudioClassificationPipeline(Pipeline):
|
||||
audio = ffmpeg_read(audio, self.feature_extractor.sampling_rate)
|
||||
|
||||
if not isinstance(audio, np.ndarray):
|
||||
raise ValueError("We expect a numpy ndarray as input")
|
||||
raise TypeError("We expect a numpy ndarray as input")
|
||||
if len(audio.shape) != 1:
|
||||
raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline")
|
||||
|
||||
|
@ -356,7 +356,7 @@ class ProcessorMixin(PushToHubMixin):
|
||||
proper_class = getattr(transformers_module, class_name)
|
||||
|
||||
if not isinstance(arg, proper_class):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected."
|
||||
)
|
||||
|
||||
|
@ -474,7 +474,7 @@ class PreTrainedTokenizer(PreTrainedTokenizerBase):
|
||||
# Always raise an error if string because users should define the behavior
|
||||
for index, token in value.items():
|
||||
if not isinstance(token, (str, AddedToken)) or not isinstance(index, int):
|
||||
raise ValueError(
|
||||
raise TypeError(
|
||||
f"The provided `added_tokens_decoder` has an element of type {index.__class__, token.__class__}, should be a dict of {int, Union[AddedToken, str]}"
|
||||
)
|
||||
|
||||
|
@ -405,7 +405,7 @@ class BitsAndBytesConfig(QuantizationConfigMixin):
|
||||
@load_in_4bit.setter
|
||||
def load_in_4bit(self, value: bool):
|
||||
if not isinstance(value, bool):
|
||||
raise ValueError("load_in_4bit must be a boolean")
|
||||
raise TypeError("load_in_4bit must be a boolean")
|
||||
|
||||
if self.load_in_8bit and value:
|
||||
raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
|
||||
@ -418,7 +418,7 @@ class BitsAndBytesConfig(QuantizationConfigMixin):
|
||||
@load_in_8bit.setter
|
||||
def load_in_8bit(self, value: bool):
|
||||
if not isinstance(value, bool):
|
||||
raise ValueError("load_in_8bit must be a boolean")
|
||||
raise TypeError("load_in_8bit must be a boolean")
|
||||
|
||||
if self.load_in_4bit and value:
|
||||
raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
|
||||
@ -429,30 +429,30 @@ class BitsAndBytesConfig(QuantizationConfigMixin):
|
||||
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
|
||||
"""
|
||||
if not isinstance(self.load_in_4bit, bool):
|
||||
raise ValueError("load_in_4bit must be a boolean")
|
||||
raise TypeError("load_in_4bit must be a boolean")
|
||||
|
||||
if not isinstance(self.load_in_8bit, bool):
|
||||
raise ValueError("load_in_8bit must be a boolean")
|
||||
raise TypeError("load_in_8bit must be a boolean")
|
||||
|
||||
if not isinstance(self.llm_int8_threshold, float):
|
||||
raise ValueError("llm_int8_threshold must be a float")
|
||||
raise TypeError("llm_int8_threshold must be a float")
|
||||
|
||||
if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list):
|
||||
raise ValueError("llm_int8_skip_modules must be a list of strings")
|
||||
raise TypeError("llm_int8_skip_modules must be a list of strings")
|
||||
if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool):
|
||||
raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean")
|
||||
raise TypeError("llm_int8_enable_fp32_cpu_offload must be a boolean")
|
||||
|
||||
if not isinstance(self.llm_int8_has_fp16_weight, bool):
|
||||
raise ValueError("llm_int8_has_fp16_weight must be a boolean")
|
||||
raise TypeError("llm_int8_has_fp16_weight must be a boolean")
|
||||
|
||||
if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype):
|
||||
raise ValueError("bnb_4bit_compute_dtype must be torch.dtype")
|
||||
raise TypeError("bnb_4bit_compute_dtype must be torch.dtype")
|
||||
|
||||
if not isinstance(self.bnb_4bit_quant_type, str):
|
||||
raise ValueError("bnb_4bit_quant_type must be a string")
|
||||
raise TypeError("bnb_4bit_quant_type must be a string")
|
||||
|
||||
if not isinstance(self.bnb_4bit_use_double_quant, bool):
|
||||
raise ValueError("bnb_4bit_use_double_quant must be a boolean")
|
||||
raise TypeError("bnb_4bit_use_double_quant must be a boolean")
|
||||
|
||||
if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse(
|
||||
"0.39.0"
|
||||
@ -957,13 +957,13 @@ class AqlmConfig(QuantizationConfigMixin):
|
||||
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
|
||||
"""
|
||||
if not isinstance(self.in_group_size, int):
|
||||
raise ValueError("in_group_size must be a float")
|
||||
raise TypeError("in_group_size must be a float")
|
||||
if not isinstance(self.out_group_size, int):
|
||||
raise ValueError("out_group_size must be a float")
|
||||
raise TypeError("out_group_size must be a float")
|
||||
if not isinstance(self.num_codebooks, int):
|
||||
raise ValueError("num_codebooks must be a float")
|
||||
raise TypeError("num_codebooks must be a float")
|
||||
if not isinstance(self.nbits_per_codebook, int):
|
||||
raise ValueError("nbits_per_codebook must be a float")
|
||||
raise TypeError("nbits_per_codebook must be a float")
|
||||
|
||||
if self.linear_weights_not_to_quantize is not None and not isinstance(
|
||||
self.linear_weights_not_to_quantize, list
|
||||
|
@ -60,7 +60,7 @@ def output_type(output):
|
||||
elif isinstance(output, (torch.Tensor, AgentAudio)):
|
||||
return "audio"
|
||||
else:
|
||||
raise ValueError(f"Invalid output: {output}")
|
||||
raise TypeError(f"Invalid output: {output}")
|
||||
|
||||
|
||||
@is_agent_test
|
||||
|
@ -188,7 +188,7 @@ class LukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
tokenizer(sentence, entities=tuple(entities), entity_spans=spans)
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
with self.assertRaises(TypeError):
|
||||
tokenizer(sentence, entities=entities, entity_spans=tuple(spans))
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
|
@ -151,7 +151,7 @@ class MLukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
tokenizer(sentence, entities=tuple(entities), entity_spans=spans)
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
with self.assertRaises(TypeError):
|
||||
tokenizer(sentence, entities=entities, entity_spans=tuple(spans))
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
|
@ -171,7 +171,7 @@ class FeatureExtractionPipelineTests(unittest.TestCase):
|
||||
elif isinstance(input_, float):
|
||||
return 0
|
||||
else:
|
||||
raise ValueError("We expect lists of floats, nothing else")
|
||||
raise TypeError("We expect lists of floats, nothing else")
|
||||
return shape
|
||||
|
||||
def get_test_pipeline(self, model, tokenizer, processor, torch_dtype="float32"):
|
||||
|
@ -145,7 +145,7 @@ class PipelineTesterMixin:
|
||||
if not isinstance(model_architectures, tuple):
|
||||
model_architectures = (model_architectures,)
|
||||
if not isinstance(model_architectures, tuple):
|
||||
raise ValueError(f"`model_architectures` must be a tuple. Got {type(model_architectures)} instead.")
|
||||
raise TypeError(f"`model_architectures` must be a tuple. Got {type(model_architectures)} instead.")
|
||||
|
||||
for model_architecture in model_architectures:
|
||||
model_arch_name = model_architecture.__name__
|
||||
|
Loading…
Reference in New Issue
Block a user