Fix video batching to videollava (#32139)

---------

Co-authored-by: Merve Noyan <mervenoyan@Merve-MacBook-Pro.local>
This commit is contained in:
Merve Noyan 2024-07-23 13:23:23 +03:00 committed by GitHub
parent a5b226ce98
commit 9ced33ca7f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 37 additions and 13 deletions

View File

@ -55,8 +55,11 @@ def make_batched_videos(videos) -> List[VideoInput]:
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]) and len(videos[0].shape) == 4:
return [list(video) for video in videos]
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
if isinstance(videos[0], PIL.Image.Image):
return [videos]
elif len(videos[0].shape) == 4:
return [list(video) for video in videos]
elif is_valid_image(videos) and len(videos.shape) == 4:
return [list(videos)]

View File

@ -97,8 +97,7 @@ class VideoLlavaImageProcessingTester(unittest.TestCase):
torchify=torchify,
)
def prepare_video_inputs(self, equal_resolution=False, torchify=False):
numpify = not torchify
def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False):
images = prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
@ -108,15 +107,19 @@ class VideoLlavaImageProcessingTester(unittest.TestCase):
numpify=numpify,
torchify=torchify,
)
# let's simply copy the frames to fake a long video-clip
videos = []
for image in images:
if numpify:
video = image[None, ...].repeat(8, 0)
else:
video = image[None, ...].repeat(8, 1, 1, 1)
videos.append(video)
if numpify or torchify:
videos = []
for image in images:
if numpify:
video = image[None, ...].repeat(8, 0)
else:
video = image[None, ...].repeat(8, 1, 1, 1)
videos.append(video)
else:
videos = []
for pil_image in images:
videos.append([pil_image] * 8)
return videos
@ -197,7 +200,7 @@ class VideoLlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase)
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=True)
video_inputs = self.image_processor_tester.prepare_video_inputs(numpify=True, equal_resolution=True)
for video in video_inputs:
self.assertIsInstance(video, np.ndarray)
@ -211,6 +214,24 @@ class VideoLlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase)
expected_output_video_shape = (5, 8, 3, 18, 18)
self.assertEqual(tuple(encoded_videos.shape), expected_output_video_shape)
def test_call_pil_videos(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# the inputs come in list of lists batched format
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=True)
for video in video_inputs:
self.assertIsInstance(video[0], Image.Image)
# Test not batched input
encoded_videos = image_processing(images=None, videos=video_inputs[0], return_tensors="pt").pixel_values_videos
expected_output_video_shape = (1, 8, 3, 18, 18)
self.assertEqual(tuple(encoded_videos.shape), expected_output_video_shape)
# Test batched
encoded_videos = image_processing(images=None, videos=video_inputs, return_tensors="pt").pixel_values_videos
expected_output_video_shape = (5, 8, 3, 18, 18)
self.assertEqual(tuple(encoded_videos.shape), expected_output_video_shape)
def test_call_pytorch(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)