* docs: replace torch.distributed.run by torchrun
`transformers` now officially support pytorch >= 1.10.
The entrypoint `torchrun`` is present from 1.10 onwards.
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
* Update src/transformers/trainer.py
with @ArthurZucker's suggestion
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
---------
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* Renamed variable extension to builder_name
* If builder name is jsonl change to json to align with load_datasets
* Apply suggestions from code review
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
---------
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
* Remove the torch main_process_first context manager from TF examples
* Correctly set num_beams=1 in our examples, and add a guard in GenerationConfig.validate()
* Update src/transformers/generation/configuration_utils.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Normalize only if needed
* Update examples/pytorch/image-classification/run_image_classification.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* if else in one line
* within block
* one more place, sorry for mess
* import order
* Update examples/pytorch/image-classification/run_image_classification.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Update examples/pytorch/image-classification/run_image_classification_no_trainer.py
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* refactor: change default block_size
* fix: return tf to origin
* fix: change files to origin
* rebase
* rebase
* rebase
* rebase
* rebase
* rebase
* rebase
* rebase
* refactor: add min block_size to files
* reformat: add min block_size for run_clm tf
* Make training args fully immutable
* Working tests, PyTorch
* In test_trainer
* during testing
* Use proper dataclass way
* Fix test
* Another one
* Fix tf
* Lingering slow
* Exception
* Clean
* make run_generation more generic for other devices
* use Accelerate to support any device type it supports.
* make style
* fix error usage of accelerator.prepare_model
* use `PartialState` to make sure everything is running on the right device
---------
Co-authored-by: statelesshz <jihuazhong1@huawei.com>
* Add text classification example
* set the problem type and finetuning task
* ruff reformated
* fix bug for unseting label_to_id for regression
* update README.md
* fixed finetuning task
* update comment
* check if label exists in feature before removing
* add useful logging