transformers/tests/models/glpn/test_image_processing_glpn.py
2023-01-19 14:46:07 +00:00

128 lines
4.9 KiB
Python

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNFeatureExtractor
class GLPNFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size_divisor=32,
do_rescale=True,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size_divisor = size_divisor
self.do_rescale = do_rescale
def prepare_feat_extract_dict(self):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class GLPNFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
feature_extraction_class = GLPNFeatureExtractor if is_vision_available() else None
def setUp(self):
self.feature_extract_tester = GLPNFeatureExtractionTester(self)
@property
def feat_extract_dict(self):
return self.feature_extract_tester.prepare_feat_extract_dict()
def test_feat_extract_properties(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(feature_extractor, "do_resize"))
self.assertTrue(hasattr(feature_extractor, "size_divisor"))
self.assertTrue(hasattr(feature_extractor, "resample"))
self.assertTrue(hasattr(feature_extractor, "do_rescale"))
def test_batch_feature(self):
pass
def test_call_pil(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input (GLPNFeatureExtractor doesn't support batching)
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
self.assertTrue(encoded_images.shape[-1] % self.feature_extract_tester.size_divisor == 0)
self.assertTrue(encoded_images.shape[-2] % self.feature_extract_tester.size_divisor == 0)
def test_call_numpy(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random numpy tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input (GLPNFeatureExtractor doesn't support batching)
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
self.assertTrue(encoded_images.shape[-1] % self.feature_extract_tester.size_divisor == 0)
self.assertTrue(encoded_images.shape[-2] % self.feature_extract_tester.size_divisor == 0)
def test_call_pytorch(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input (GLPNFeatureExtractor doesn't support batching)
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
self.assertTrue(encoded_images.shape[-1] % self.feature_extract_tester.size_divisor == 0)
self.assertTrue(encoded_images.shape[-2] % self.feature_extract_tester.size_divisor == 0)