# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNFeatureExtractor class GLPNFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size_divisor=32, do_rescale=True, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size_divisor = size_divisor self.do_rescale = do_rescale def prepare_feat_extract_dict(self): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class GLPNFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase): feature_extraction_class = GLPNFeatureExtractor if is_vision_available() else None def setUp(self): self.feature_extract_tester = GLPNFeatureExtractionTester(self) @property def feat_extract_dict(self): return self.feature_extract_tester.prepare_feat_extract_dict() def test_feat_extract_properties(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(feature_extractor, "do_resize")) self.assertTrue(hasattr(feature_extractor, "size_divisor")) self.assertTrue(hasattr(feature_extractor, "resample")) self.assertTrue(hasattr(feature_extractor, "do_rescale")) def test_batch_feature(self): pass def test_call_pil(self): # Initialize feature_extractor feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) # create random PIL images image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input (GLPNFeatureExtractor doesn't support batching) encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values self.assertTrue(encoded_images.shape[-1] % self.feature_extract_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.feature_extract_tester.size_divisor == 0) def test_call_numpy(self): # Initialize feature_extractor feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) # create random numpy tensors image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input (GLPNFeatureExtractor doesn't support batching) encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values self.assertTrue(encoded_images.shape[-1] % self.feature_extract_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.feature_extract_tester.size_divisor == 0) def test_call_pytorch(self): # Initialize feature_extractor feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) # create random PyTorch tensors image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input (GLPNFeatureExtractor doesn't support batching) encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values self.assertTrue(encoded_images.shape[-1] % self.feature_extract_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.feature_extract_tester.size_divisor == 0)