transformers/tests/models/paligemma/test_processing_paligemma.py
Raushan Turganbay 3e039d3827
Paligemma support for multi-image (#33447)
* upadte

* Update src/transformers/models/paligemma/processing_paligemma.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update docs

* better example in tests

* support image tokens

* read token

* Update tests/models/paligemma/test_processing_paligemma.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* nit: naming

* Update docs/source/en/model_doc/paligemma.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* conflicts after rebasing

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
2024-09-27 11:23:14 +02:00

85 lines
3.7 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from transformers import AutoProcessor, GemmaTokenizerFast, PaliGemmaProcessor
from transformers.testing_utils import require_read_token, require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import SiglipImageProcessor
@require_vision
@require_read_token
class PaliGemmaProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = PaliGemmaProcessor
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = SiglipImageProcessor(do_center_crop=False)
tokenizer = GemmaTokenizerFast.from_pretrained("google/gemma-7b")
image_processor.image_seq_length = 32
processor = PaliGemmaProcessor(image_processor=image_processor, tokenizer=tokenizer)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_text_with_image_tokens(self):
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
text_multi_images = "<image><image><bos>Dummy text!"
text_single_image = "<image><bos>Dummy text!"
text_no_image = "Dummy text!"
image = self.prepare_image_inputs()[0]
out_noimage = processor(text=text_no_image, images=image, return_tensors="np")
out_singlimage = processor(text=text_single_image, images=image, return_tensors="np")
for k in out_noimage:
self.assertTrue(out_noimage[k].tolist() == out_singlimage[k].tolist())
out_multiimages = processor(text=text_multi_images, images=[image, image], return_tensors="np")
out_noimage = processor(text=text_no_image, images=[[image, image]], return_tensors="np")
# We can't be sure what is users intention, whether user want "one text + two images" or user forgot to add the second text
with self.assertRaises(ValueError):
out_noimage = processor(text=text_no_image, images=[image, image], return_tensors="np")
for k in out_noimage:
self.assertTrue(out_noimage[k].tolist() == out_multiimages[k].tolist())
text_batched = ["Dummy text!", "Dummy text!"]
text_batched_with_image = ["<image><bos>Dummy text!", "<image><bos>Dummy text!"]
out_images = processor(text=text_batched_with_image, images=[image, image], return_tensors="np")
out_noimage_nested = processor(text=text_batched, images=[[image], [image]], return_tensors="np")
out_noimage = processor(text=text_batched, images=[image, image], return_tensors="np")
for k in out_noimage:
self.assertTrue(out_noimage[k].tolist() == out_images[k].tolist() == out_noimage_nested[k].tolist())