# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from transformers import AutoProcessor, GemmaTokenizerFast, PaliGemmaProcessor from transformers.testing_utils import require_read_token, require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from transformers import SiglipImageProcessor @require_vision @require_read_token class PaliGemmaProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = PaliGemmaProcessor def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = SiglipImageProcessor(do_center_crop=False) tokenizer = GemmaTokenizerFast.from_pretrained("google/gemma-7b") image_processor.image_seq_length = 32 processor = PaliGemmaProcessor(image_processor=image_processor, tokenizer=tokenizer) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def tearDown(self): shutil.rmtree(self.tmpdirname) def test_text_with_image_tokens(self): image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor) text_multi_images = "Dummy text!" text_single_image = "Dummy text!" text_no_image = "Dummy text!" image = self.prepare_image_inputs()[0] out_noimage = processor(text=text_no_image, images=image, return_tensors="np") out_singlimage = processor(text=text_single_image, images=image, return_tensors="np") for k in out_noimage: self.assertTrue(out_noimage[k].tolist() == out_singlimage[k].tolist()) out_multiimages = processor(text=text_multi_images, images=[image, image], return_tensors="np") out_noimage = processor(text=text_no_image, images=[[image, image]], return_tensors="np") # We can't be sure what is users intention, whether user want "one text + two images" or user forgot to add the second text with self.assertRaises(ValueError): out_noimage = processor(text=text_no_image, images=[image, image], return_tensors="np") for k in out_noimage: self.assertTrue(out_noimage[k].tolist() == out_multiimages[k].tolist()) text_batched = ["Dummy text!", "Dummy text!"] text_batched_with_image = ["Dummy text!", "Dummy text!"] out_images = processor(text=text_batched_with_image, images=[image, image], return_tensors="np") out_noimage_nested = processor(text=text_batched, images=[[image], [image]], return_tensors="np") out_noimage = processor(text=text_batched, images=[image, image], return_tensors="np") for k in out_noimage: self.assertTrue(out_noimage[k].tolist() == out_images[k].tolist() == out_noimage_nested[k].tolist())