mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* a draft version * v2 integration * fix * make it more generic and works for IA3 * add set adapter and multiple adapters support * fixup * adapt a bit * oops * oops * oops * adapt more * fix * add more refactor * now works with model class * change it to instance method as it causes issues with `jit`. * add CR * change method name * add `add_adapter` method * clean up * Update src/transformers/adapters/peft_mixin.py Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * add moe utils * fixup * Update src/transformers/adapters/peft_mixin.py Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * adapt * oops * fixup * add is_peft_available * remove `requires_backend` * trainer compatibility * fixup + docstring * more details * trigger CI * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/modeling_utils.py * fixup + is_main_process * added `save_peft_format` in save_pretrained * up * fix nits here and there * nits here and there. * docs * revert `encoding="utf-8"` * comment * added slow tests before the PEFT release. * fixup and nits * let's be on the safe zone * added more comments * v1 docs * add remaining docs * Apply suggestions from code review Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * move to `lib_integrations` * fixup * this time fixup * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * address final comments * refactor to use `token` * add PEFT to DockerFile for slow tests. * added pipeline support. --------- Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
237 lines
9.7 KiB
Python
237 lines
9.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import AutoModelForCausalLM, OPTForCausalLM
|
|
from transformers.testing_utils import require_peft, require_torch, require_torch_gpu, slow, torch_device
|
|
from transformers.utils import is_torch_available
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
@require_peft
|
|
@require_torch
|
|
class PeftTesterMixin:
|
|
peft_test_model_ids = ("peft-internal-testing/tiny-OPTForCausalLM-lora",)
|
|
transformers_test_model_ids = ("hf-internal-testing/tiny-random-OPTForCausalLM",)
|
|
transformers_test_model_classes = (AutoModelForCausalLM, OPTForCausalLM)
|
|
|
|
|
|
# TODO: run it with CI after PEFT release.
|
|
@slow
|
|
class PeftIntegrationTester(unittest.TestCase, PeftTesterMixin):
|
|
"""
|
|
A testing suite that makes sure that the PeftModel class is correctly integrated into the transformers library.
|
|
"""
|
|
|
|
def _check_lora_correctly_converted(self, model):
|
|
"""
|
|
Utility method to check if the model has correctly adapters injected on it.
|
|
"""
|
|
from peft.tuners.tuners_utils import BaseTunerLayer
|
|
|
|
is_peft_loaded = False
|
|
|
|
for _, m in model.named_modules():
|
|
if isinstance(m, BaseTunerLayer):
|
|
is_peft_loaded = True
|
|
break
|
|
|
|
return is_peft_loaded
|
|
|
|
def test_peft_from_pretrained(self):
|
|
"""
|
|
Simple test that tests the basic usage of PEFT model through `from_pretrained`.
|
|
This checks if we pass a remote folder that contains an adapter config and adapter weights, it
|
|
should correctly load a model that has adapters injected on it.
|
|
"""
|
|
for model_id in self.peft_test_model_ids:
|
|
for transformers_class in self.transformers_test_model_classes:
|
|
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
|
|
|
|
self.assertTrue(self._check_lora_correctly_converted(peft_model))
|
|
self.assertTrue(peft_model._hf_peft_config_loaded)
|
|
# dummy generation
|
|
_ = peft_model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))
|
|
|
|
def test_peft_state_dict(self):
|
|
"""
|
|
Simple test that checks if the returned state dict of `get_adapter_state_dict()` method contains
|
|
the expected keys.
|
|
"""
|
|
for model_id in self.peft_test_model_ids:
|
|
for transformers_class in self.transformers_test_model_classes:
|
|
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
|
|
|
|
state_dict = peft_model.get_adapter_state_dict()
|
|
|
|
for key in state_dict.keys():
|
|
self.assertTrue("lora" in key)
|
|
|
|
def test_peft_save_pretrained(self):
|
|
"""
|
|
Test that checks various combinations of `save_pretrained` with a model that has adapters loaded
|
|
on it. This checks if the saved model contains the expected files (adapter weights and adapter config).
|
|
"""
|
|
for model_id in self.peft_test_model_ids:
|
|
for transformers_class in self.transformers_test_model_classes:
|
|
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
peft_model.save_pretrained(tmpdirname)
|
|
|
|
self.assertTrue("adapter_model.bin" in os.listdir(tmpdirname))
|
|
self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
|
|
|
|
self.assertTrue("config.json" not in os.listdir(tmpdirname))
|
|
self.assertTrue("pytorch_model.bin" not in os.listdir(tmpdirname))
|
|
|
|
peft_model = transformers_class.from_pretrained(tmpdirname).to(torch_device)
|
|
self.assertTrue(self._check_lora_correctly_converted(peft_model))
|
|
|
|
peft_model.save_pretrained(tmpdirname, safe_serialization=True)
|
|
self.assertTrue("adapter_model.safetensors" in os.listdir(tmpdirname))
|
|
self.assertTrue("adapter_config.json" in os.listdir(tmpdirname))
|
|
|
|
peft_model = transformers_class.from_pretrained(tmpdirname).to(torch_device)
|
|
self.assertTrue(self._check_lora_correctly_converted(peft_model))
|
|
|
|
def test_peft_enable_disable_adapters(self):
|
|
"""
|
|
A test that checks if `enable_adapters` and `disable_adapters` methods work as expected.
|
|
"""
|
|
from peft import LoraConfig
|
|
|
|
dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
|
|
|
|
for model_id in self.transformers_test_model_ids:
|
|
for transformers_class in self.transformers_test_model_classes:
|
|
peft_model = transformers_class.from_pretrained(model_id).to(torch_device)
|
|
|
|
peft_config = LoraConfig(init_lora_weights=False)
|
|
|
|
peft_model.add_adapter(peft_config)
|
|
|
|
peft_logits = peft_model(dummy_input).logits
|
|
|
|
peft_model.disable_adapters()
|
|
|
|
peft_logits_disabled = peft_model(dummy_input).logits
|
|
|
|
peft_model.enable_adapters()
|
|
|
|
peft_logits_enabled = peft_model(dummy_input).logits
|
|
|
|
self.assertTrue(torch.allclose(peft_logits, peft_logits_enabled, atol=1e-12, rtol=1e-12))
|
|
self.assertFalse(torch.allclose(peft_logits_enabled, peft_logits_disabled, atol=1e-12, rtol=1e-12))
|
|
|
|
def test_peft_add_adapter(self):
|
|
"""
|
|
Simple test that tests if `add_adapter` works as expected
|
|
"""
|
|
from peft import LoraConfig
|
|
|
|
for model_id in self.transformers_test_model_ids:
|
|
for transformers_class in self.transformers_test_model_classes:
|
|
model = transformers_class.from_pretrained(model_id).to(torch_device)
|
|
|
|
peft_config = LoraConfig(init_lora_weights=False)
|
|
|
|
model.add_adapter(peft_config)
|
|
|
|
self.assertTrue(self._check_lora_correctly_converted(model))
|
|
# dummy generation
|
|
_ = model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))
|
|
|
|
def test_peft_add_multi_adapter(self):
|
|
"""
|
|
Simple test that tests the basic usage of PEFT model through `from_pretrained`. This test tests if
|
|
add_adapter works as expected in multi-adapter setting.
|
|
"""
|
|
from peft import LoraConfig
|
|
from peft.tuners.tuners_utils import BaseTunerLayer
|
|
|
|
dummy_input = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device)
|
|
|
|
for model_id in self.transformers_test_model_ids:
|
|
for transformers_class in self.transformers_test_model_classes:
|
|
is_peft_loaded = False
|
|
model = transformers_class.from_pretrained(model_id).to(torch_device)
|
|
|
|
logits_original_model = model(dummy_input).logits
|
|
|
|
peft_config = LoraConfig(init_lora_weights=False)
|
|
|
|
model.add_adapter(peft_config)
|
|
|
|
logits_adapter_1 = model(dummy_input)
|
|
|
|
model.add_adapter(peft_config, adapter_name="adapter-2")
|
|
|
|
logits_adapter_2 = model(dummy_input)
|
|
|
|
for _, m in model.named_modules():
|
|
if isinstance(m, BaseTunerLayer):
|
|
is_peft_loaded = True
|
|
break
|
|
|
|
self.assertTrue(is_peft_loaded)
|
|
|
|
# dummy generation
|
|
_ = model.generate(input_ids=dummy_input)
|
|
|
|
model.set_adapter("default")
|
|
self.assertTrue(model.active_adapter() == "default")
|
|
|
|
model.set_adapter("adapter-2")
|
|
self.assertTrue(model.active_adapter() == "adapter-2")
|
|
|
|
# Logits comparison
|
|
self.assertFalse(
|
|
torch.allclose(logits_adapter_1.logits, logits_adapter_2.logits, atol=1e-6, rtol=1e-6)
|
|
)
|
|
self.assertFalse(torch.allclose(logits_original_model, logits_adapter_2.logits, atol=1e-6, rtol=1e-6))
|
|
|
|
@require_torch_gpu
|
|
def test_peft_from_pretrained_kwargs(self):
|
|
"""
|
|
Simple test that tests the basic usage of PEFT model through `from_pretrained` + additional kwargs
|
|
and see if the integraiton behaves as expected.
|
|
"""
|
|
for model_id in self.peft_test_model_ids:
|
|
for transformers_class in self.transformers_test_model_classes:
|
|
peft_model = transformers_class.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
|
|
|
|
module = peft_model.model.decoder.layers[0].self_attn.v_proj
|
|
self.assertTrue(module.__class__.__name__ == "Linear8bitLt")
|
|
self.assertTrue(peft_model.hf_device_map is not None)
|
|
|
|
# dummy generation
|
|
_ = peft_model.generate(input_ids=torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 7]]).to(torch_device))
|
|
|
|
def test_peft_pipeline(self):
|
|
"""
|
|
Simple test that tests the basic usage of PEFT model + pipeline
|
|
"""
|
|
from transformers import pipeline
|
|
|
|
for model_id in self.peft_test_model_ids:
|
|
pipe = pipeline("text-generation", model_id)
|
|
_ = pipe("Hello")
|