mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00
258 lines
9.3 KiB
Python
258 lines
9.3 KiB
Python
import json
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from accelerate import init_empty_weights
|
|
from huggingface_hub import HfApi
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.quantizers import HfQuantizer, get_module_from_name, register_quantization_config, register_quantizer
|
|
from transformers.utils.quantization_config import QuantizationConfigMixin
|
|
|
|
|
|
# Implement INT8 Symmetric Linear layer
|
|
class Int8SymmetricLinear(torch.nn.Module):
|
|
def __init__(self, in_features, out_features, bias, dtype=torch.float32):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
|
|
self.register_buffer("weight", torch.zeros((out_features, in_features), dtype=torch.int8))
|
|
self.register_buffer("weight_scale", torch.zeros((out_features, 1), dtype=dtype))
|
|
|
|
if bias:
|
|
self.register_buffer("bias", torch.zeros((self.out_features), dtype=dtype))
|
|
else:
|
|
self.bias = None
|
|
|
|
def forward(self, x):
|
|
dequant_weight = self.weight * self.weight_scale
|
|
output = F.linear(x, dequant_weight)
|
|
if self.bias is not None:
|
|
output = output + self.bias
|
|
return output
|
|
|
|
|
|
# Function to replace standard linear layers with INT8 symmetric quantized layers
|
|
def _replace_with_int8_symmetric_linear(
|
|
model,
|
|
modules_to_not_convert=None,
|
|
current_key_name=None,
|
|
quantization_config=None,
|
|
has_been_replaced=False,
|
|
pre_quantized=False,
|
|
):
|
|
"""
|
|
Recursively replaces nn.Linear modules with Int8SymmetricLinear modules.
|
|
"""
|
|
if current_key_name is None:
|
|
current_key_name = []
|
|
|
|
for name, module in model.named_children():
|
|
current_key_name.append(name)
|
|
|
|
if (isinstance(module, nn.Linear)) and name not in modules_to_not_convert:
|
|
# Check if the current key is not in the `modules_to_not_convert`
|
|
current_key_name_str = ".".join(current_key_name)
|
|
if not any(
|
|
(key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert
|
|
):
|
|
with init_empty_weights(include_buffers=True):
|
|
in_features = module.in_features
|
|
out_features = module.out_features
|
|
model._modules[name] = Int8SymmetricLinear(
|
|
in_features, out_features, module.bias is not None, dtype=module.weight.dtype
|
|
)
|
|
has_been_replaced = True
|
|
model._modules[name].requires_grad_(False)
|
|
|
|
if len(list(module.children())) > 0:
|
|
_, has_been_replaced = _replace_with_int8_symmetric_linear(
|
|
module,
|
|
modules_to_not_convert,
|
|
current_key_name,
|
|
quantization_config,
|
|
has_been_replaced=has_been_replaced,
|
|
pre_quantized=pre_quantized,
|
|
)
|
|
# Remove the last key for recursion
|
|
current_key_name.pop(-1)
|
|
return model, has_been_replaced
|
|
|
|
|
|
def replace_with_int8_symmetric_linear(
|
|
model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, pre_quantized=False
|
|
):
|
|
"""
|
|
Main function to replace model layers with INT8 symmetric quantized versions.
|
|
"""
|
|
modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert
|
|
|
|
if quantization_config.modules_to_not_convert is not None:
|
|
modules_to_not_convert.extend(quantization_config.modules_to_not_convert)
|
|
modules_to_not_convert = list(set(modules_to_not_convert))
|
|
|
|
model, has_been_replaced = _replace_with_int8_symmetric_linear(
|
|
model, modules_to_not_convert, current_key_name, quantization_config, pre_quantized=pre_quantized
|
|
)
|
|
|
|
if not has_been_replaced:
|
|
raise ValueError(
|
|
"You are loading your model using INT8 symmetric quantization but no linear modules were found in your model."
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
@register_quantization_config("int8_symmetric")
|
|
class Int8SymmetricConfig(QuantizationConfigMixin):
|
|
"""
|
|
Configuration for INT8 symmetric quantization.
|
|
"""
|
|
|
|
def __init__(self, modules_to_not_convert: Optional[List[str]] = None, **kwargs):
|
|
self.quant_method = "int8_symmetric"
|
|
self.modules_to_not_convert = modules_to_not_convert
|
|
|
|
def __repr__(self):
|
|
config_dict = self.to_dict()
|
|
return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n"
|
|
|
|
def to_diff_dict(self) -> Dict[str, Any]:
|
|
config_dict = self.to_dict()
|
|
default_config_dict = Int8SymmetricConfig().to_dict()
|
|
|
|
serializable_config_dict = {}
|
|
for key, value in config_dict.items():
|
|
if value != default_config_dict[key]:
|
|
serializable_config_dict[key] = value
|
|
|
|
return serializable_config_dict
|
|
|
|
|
|
@register_quantizer("int8_symmetric")
|
|
class Int8SymmetricQuantizer(HfQuantizer):
|
|
"""
|
|
Implementation of INT8 symmetric quantization.
|
|
|
|
"""
|
|
|
|
requires_calibration = False
|
|
requires_parameters_quantization = True
|
|
|
|
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
|
|
super().__init__(quantization_config, **kwargs)
|
|
self.quantization_config = quantization_config
|
|
|
|
def _process_model_before_weight_loading(self, model, **kwargs):
|
|
"""
|
|
Replace model's linear layers with quantized versions before loading weights.
|
|
"""
|
|
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert
|
|
|
|
model = replace_with_int8_symmetric_linear(
|
|
model,
|
|
modules_to_not_convert=self.modules_to_not_convert,
|
|
quantization_config=self.quantization_config,
|
|
pre_quantized=self.pre_quantized,
|
|
)
|
|
|
|
def check_quantized_param(
|
|
self,
|
|
model,
|
|
param_value: "torch.Tensor",
|
|
param_name: str,
|
|
state_dict: Dict[str, Any],
|
|
**kwargs,
|
|
):
|
|
module, tensor_name = get_module_from_name(model, param_name)
|
|
|
|
if isinstance(module, Int8SymmetricLinear):
|
|
if self.pre_quantized or tensor_name == "bias":
|
|
if tensor_name == "weight" and param_value.dtype != torch.int8:
|
|
raise ValueError("Expect quantized weights but got an unquantized weight")
|
|
return False
|
|
else:
|
|
if tensor_name == "weight_scale":
|
|
raise ValueError("Expect unquantized weights but got a quantized weight_scale")
|
|
return True
|
|
return False
|
|
|
|
def create_quantized_param(
|
|
self,
|
|
model,
|
|
param_value: "torch.Tensor",
|
|
param_name: str,
|
|
target_device: "torch.device",
|
|
state_dict: Dict[str, Any],
|
|
unexpected_keys: Optional[List[str]] = None,
|
|
):
|
|
"""
|
|
Quantizes weights to INT8 symmetric format.
|
|
"""
|
|
abs_max_per_row = torch.max(torch.abs(param_value), dim=1, keepdim=True)[0].clamp(min=1e-5)
|
|
|
|
weight_scale = abs_max_per_row / 127.0
|
|
|
|
weight_quantized = torch.round(param_value / weight_scale).clamp(-128, 127).to(torch.int8)
|
|
|
|
module, tensor_name = get_module_from_name(model, param_name)
|
|
module._buffers[tensor_name] = weight_quantized.to(target_device)
|
|
module._buffers["weight_scale"] = weight_scale.to(target_device)
|
|
|
|
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
|
|
not_missing_keys = []
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, Int8SymmetricLinear):
|
|
for missing in missing_keys:
|
|
if (
|
|
(name in missing or name in f"{prefix}.{missing}")
|
|
and not missing.endswith(".weight")
|
|
and not missing.endswith(".bias")
|
|
):
|
|
not_missing_keys.append(missing)
|
|
return [k for k in missing_keys if k not in not_missing_keys]
|
|
|
|
def _process_model_after_weight_loading(self, model, **kwargs):
|
|
"""
|
|
Post-processing after weights are loaded.
|
|
"""
|
|
return True
|
|
|
|
def is_serializable(self, safe_serialization=None):
|
|
return True
|
|
|
|
@property
|
|
def is_trainable(self) -> bool:
|
|
return False
|
|
|
|
|
|
# Example usage
|
|
if __name__ == "__main__":
|
|
model_int8 = AutoModelForCausalLM.from_pretrained(
|
|
"meta-llama/Llama-3.2-1B", quantization_config=Int8SymmetricConfig(), torch_dtype=torch.float, device_map="cpu"
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
|
|
input_text = "once there is"
|
|
inputs = tokenizer(input_text, return_tensors="pt").to("cpu")
|
|
output = model_int8.generate(
|
|
**inputs,
|
|
max_length=100,
|
|
num_return_sequences=1,
|
|
no_repeat_ngram_size=2,
|
|
)
|
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
print(generated_text)
|
|
|
|
# Save and upload to HUB
|
|
output_model_dir = "Llama-3.2-1B-INT8-CUSTOM"
|
|
model_int8.save_pretrained(output_model_dir)
|
|
tokenizer.save_pretrained(output_model_dir)
|
|
api = HfApi()
|
|
repo_id = "medmekk/Llama-3.2-1B-INT8-CUSTOM"
|
|
api.create_repo(repo_id, private=False)
|
|
api.upload_folder(folder_path=output_model_dir, repo_id=repo_id, repo_type="model")
|