mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* Draft fast image processors * Draft working fast version * py3.8 compatible cache * Enable loading fast image processors through auto * Tidy up; rescale behaviour based on input type * Enable tests for fast image processors * Smarter rescaling * Don't default to Fast * Safer imports * Add necessary Pillow requirement * Woops * Add AutoImageProcessor test * Fix up * Fix test for imagegpt * Fix test * Review comments * Add warning for TF and JAX input types * Rearrange * Return transforms * NumpyToTensor transformation * Rebase - include changes from upstream in ImageProcessingMixin * Safe typing * Fix up * convert mean/std to tesnor to rescale * Don't store transforms in state * Fix up * Update src/transformers/image_processing_utils_fast.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/auto/image_processing_auto.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/auto/image_processing_auto.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/auto/image_processing_auto.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Warn if fast image processor available * Update src/transformers/models/vit/image_processing_vit_fast.py * Transpose incoming numpy images to be in CHW format * Update mapping names based on packages, auto set fast to None * Fix up * Fix * Add AutoImageProcessor.from_pretrained(checkpoint, use_fast=True) test * Update src/transformers/models/vit/image_processing_vit_fast.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * Add equivalence and speed tests * Fix up --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
1.4 KiB
1.4 KiB
Image Processor
An image processor is in charge of preparing input features for vision models and post processing their outputs. This includes transformations such as resizing, normalization, and conversion to PyTorch, TensorFlow, Flax and Numpy tensors. It may also include model specific post-processing such as converting logits to segmentation masks.
ImageProcessingMixin
autodoc image_processing_utils.ImageProcessingMixin - from_pretrained - save_pretrained
BatchFeature
autodoc BatchFeature
BaseImageProcessor
autodoc image_processing_utils.BaseImageProcessor
BaseImageProcessorFast
autodoc image_processing_utils_fast.BaseImageProcessorFast