transformers/docs/source/en/model_doc/smolvlm.md
Orr Zohar 4397dfcb71
SmolVLM2 (#36126)
* smolvlm init

* updates

* fixing bugs

* minimal run, no checks

* minimal run, no checks

* passing first check + adding url support

* updating video dataloading logic

* fixing image logic

* trying modular, but fails

* modular is working, changing processor to match PR comments and general transformers logic

* fixing kwargs

* offloading video loading logic to  image_util

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* fixing circleci code formatting errors

* update

* add idefics3-based tests

* add keyword to all

* add PreTrainedModel

* updateing video loading logic

* working inference

* updates for PR comments

* updates for PR comments

* moving SmolVLMPretrainedModel higher to fix import error

* CI test pass

* CI test pass

* removing lambda

* CI test pass

* CI test pass

* CI test pass

* CI test pass

* CI test pass

* CI test pass

* processor tests

* add example in docs

* typo

* fix copies

* skip compile tests - sdpa for VisionTransformer

* fix init

* raise import error for num2words

* update doc for FA2

* more doc fix

* CI

* updates for PR comments

* Update docs/source/en/model_doc/smolvlm.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/smolvlm.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/smolvlm.md

Co-authored-by: Joshua Lochner <admin@xenova.com>

* Update docs/source/en/model_doc/smolvlm.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/smolvlm.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* fixing processor -- tokenizer not defined properly, (gpt2 tokenizer), and does not have the attributes of fake image token, etc

* adding smolvlm to VQA models

* removing vqa auto class

* Update src/transformers/models/smolvlm/processing_smolvlm.py

Co-authored-by: Joshua Lochner <admin@xenova.com>

* removing smolvlmvisiontransformer from index.md

* my bad, video processing had typos

* fixing docs

* renaming params in SmolVLMModel.inputs_merger

* removing un-needed dtype/device in model forward

* ruff for CI

* update docs

* Update docs/source/en/model_doc/smolvlm.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* return cache position

* return cache position

* return cache also in modular

* needed to run modular again

* fix training tests

* push vectorized inputs merger

* format

* format

* reduce number of mappings

* addressing PR comments

* happy CI, happy me :)

* skip non-nested images

* adjust integration test for smaller GPUs

* format

* fix kwargs in chat template apply

* skip this for now

---------

Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Pablo <pablo.montalvo.leroux@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Joshua Lochner <admin@xenova.com>
2025-02-20 15:00:26 +01:00

5.7 KiB
Raw Blame History

SmolVLM

Overview

SmolVLM2 is an adaptation of the Idefics3 model with two main differences:

  • It uses SmolLM2 for the text model.
  • It supports multi-image and video inputs

Usage tips

Input images are processed either by upsampling (if resizing is enabled) or at their original resolution. The resizing behavior depends on two parameters: do_resize and size.

Videos should not be upsampled.

If do_resize is set to True, the model resizes images so that the longest edge is 4*512 pixels by default. The default resizing behavior can be customized by passing a dictionary to the size parameter. For example, {"longest_edge": 4 * 512} is the default, but you can change it to a different value if needed.

Heres how to control resizing and set a custom size:

image_processor = SmolVLMImageProcessor(do_resize=True, size={"longest_edge": 2 * 512}, max_image_size=512)

Additionally, the max_image_size parameter, which controls the size of each square patch the image is decomposed into, is set to 512 by default but can be adjusted as needed. After resizing (if applicable), the image processor decomposes the images into square patches based on the max_image_size parameter.

This model was contributed by orrzohar.

Usage example

Single Media inference

The model can accept both images and videos as input, but you should use only one of the modalities at a time. Here's an example code for that.

import torch
from transformers import AutoProcessor, AutoModelForImageTextToText

processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")
model = AutoModelForImageTextToText.from_pretrained(
    "HuggingFaceTB/SmolVLM2-256M-Video-Instruct",
    torch_dtype=torch.bfloat16,
    device_map="cuda"
)

conversation = [
    {
        "role": "user",
        "content":[
            {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
            {"type": "text", "text": "Describe this image."}
        ]
    }
]

inputs = processor.apply_chat_template(
    conversation,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
).to(model.device, dtype=torch.bfloat16)

output_ids = model.generate(**inputs, max_new_tokens=128)
generated_texts = processor.batch_decode(output_ids, skip_special_tokens=True)
print(generated_texts)


# Video
conversation = [
    {
        "role": "user",
        "content": [
            {"type": "video", "path": "/path/to/video.mp4"},
            {"type": "text", "text": "Describe this video in detail"}
        ]
    },
]

inputs = processor.apply_chat_template(
    conversation,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
).to(model.device, dtype=torch.bfloat16)

generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
print(generated_texts[0])

Batch Mixed Media Inference

The model can batch inputs composed of several images/videos and text. Here is an example.

import torch
from transformers import AutoProcessor, AutoModelForImageTextToText

processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")
model = AutoModelForImageTextToText.from_pretrained(
    "HuggingFaceTB/SmolVLM2-256M-Video-Instruct",
    torch_dtype=torch.bfloat16,
    device_map="cuda"
)

# Conversation for the first image
conversation1 = [
    {
        "role": "user",
        "content": [
            {"type": "image", "path": "/path/to/image.jpg"},
            {"type": "text", "text": "Describe this image."}
        ]
    }
]

# Conversation with two images
conversation2 = [
    {
        "role": "user",
        "content": [
            {"type": "image", "path": "/path/to/image.jpg"},
            {"type": "image", "path": "/path/to/image.jpg"},
            {"type": "text", "text": "What is written in the pictures?"}
        ]
    }
]

# Conversation with pure text
conversation3 = [
    {"role": "user","content": "who are you?"}
]


conversations = [conversation1, conversation2, conversation3]
inputs = processor.apply_chat_template(
    conversation,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
).to(model.device, dtype=torch.bfloat16)

generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
print(generated_texts[0])

SmolVLMConfig

autodoc SmolVLMConfig

SmolVLMVisionConfig

autodoc SmolVLMVisionConfig

Idefics3VisionTransformer

autodoc SmolVLMVisionTransformer

SmolVLMModel

autodoc SmolVLMModel - forward

SmolVLMForConditionalGeneration

autodoc SmolVLMForConditionalGeneration - forward

SmolVLMImageProcessor

autodoc SmolVLMImageProcessor - preprocess

SmolVLMProcessor

autodoc SmolVLMProcessor - call