mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 06:40:04 +06:00

* Cleaning up `ConversationalPipeline` to support more than DialoGPT. Currently ConversationalPipeline was heavily biased towards DialoGPT ,which is the default model for this pipeline. This PR proposes changes to put back the modifications specific to DialoGPT into tokenizer-specific behavior wherever possible, by creating `_build_conversation_input_ids` function that takes conversation as input, and returns a list of ints corresponding to the tokens. It feels natural to put here because all models have probably different strategies to build input_ids from the full conversation and it's the tokenizer's job to transform strings into tokens (and vice-versa) If `_build_conversation_input_ids` is missing, previous behavior is used so we don't break anything so far (except for blenderbot where it's a fix). This PR also contains a fix for too long inputs. There used to be dead code for trying to limit the size of incoming input. The introduced fixed is that we limit within `_build_conversation_input_ids` to `tokenizer.model_max_length`. It corresponds to the intent of the removed dead code and is actually better because it corresponds to `model_max_length` which is different from `max_length` (which is a default parameter for `generate`). - Removed `history` logic from the Conversation as it's not relevant anymore because tokenization logic has been moved to tokenizer. And tokenizer cannot save any cache, and conversation cannot know what is relevant or not. Also it's not usable from `blenderbot` because the input_ids are not append only (EOS tokens is always at the end). - Added `iter_texts` method on `Conversation` because all the code was literred with some form of this iteration of past/generated_responses. * Removing torch mention in types. * Adding type checking to `_build_conversation_input_ids`. * Fixing import in strings.
392 lines
16 KiB
Python
392 lines
16 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoModelForSeq2SeqLM,
|
|
AutoTokenizer,
|
|
Conversation,
|
|
ConversationalPipeline,
|
|
is_torch_available,
|
|
pipeline,
|
|
)
|
|
from transformers.testing_utils import is_pipeline_test, require_torch, slow, torch_device
|
|
|
|
from .test_pipelines_common import MonoInputPipelineCommonMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.models.gpt2 import GPT2Config, GPT2LMHeadModel
|
|
|
|
DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0
|
|
|
|
|
|
@is_pipeline_test
|
|
class SimpleConversationPipelineTests(unittest.TestCase):
|
|
def get_pipeline(self):
|
|
# When
|
|
config = GPT2Config(
|
|
vocab_size=263,
|
|
n_ctx=128,
|
|
max_length=128,
|
|
n_embd=64,
|
|
n_layer=1,
|
|
n_head=8,
|
|
bos_token_id=256,
|
|
eos_token_id=257,
|
|
)
|
|
model = GPT2LMHeadModel(config)
|
|
# Force model output to be L
|
|
V, D = model.lm_head.weight.shape
|
|
bias = torch.zeros(V, requires_grad=True)
|
|
weight = torch.zeros((V, D), requires_grad=True)
|
|
bias[76] = 1
|
|
|
|
model.lm_head.bias = torch.nn.Parameter(bias)
|
|
model.lm_head.weight = torch.nn.Parameter(weight)
|
|
|
|
# # Created with:
|
|
# import tempfile
|
|
|
|
# from tokenizers import Tokenizer, models
|
|
# from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
|
|
|
# vocab = [(chr(i), i) for i in range(256)]
|
|
# tokenizer = Tokenizer(models.Unigram(vocab))
|
|
# with tempfile.NamedTemporaryFile() as f:
|
|
# tokenizer.save(f.name)
|
|
# real_tokenizer = PreTrainedTokenizerFast(tokenizer_file=f.name, eos_token="<eos>", bos_token="<bos>")
|
|
|
|
# real_tokenizer._tokenizer.save("dummy.json")
|
|
# Special tokens are automatically added at load time.
|
|
tokenizer = AutoTokenizer.from_pretrained("Narsil/small_conversational_test")
|
|
conversation_agent = pipeline(
|
|
task="conversational", device=DEFAULT_DEVICE_NUM, model=model, tokenizer=tokenizer
|
|
)
|
|
return conversation_agent
|
|
|
|
@require_torch
|
|
def test_integration_torch_conversation(self):
|
|
conversation_agent = self.get_pipeline()
|
|
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
|
|
conversation_2 = Conversation("What's the last book you have read?")
|
|
self.assertEqual(len(conversation_1.past_user_inputs), 0)
|
|
self.assertEqual(len(conversation_2.past_user_inputs), 0)
|
|
|
|
result = conversation_agent([conversation_1, conversation_2], max_length=48)
|
|
|
|
# Two conversations in one pass
|
|
self.assertEqual(result, [conversation_1, conversation_2])
|
|
self.assertEqual(
|
|
result,
|
|
[
|
|
Conversation(
|
|
None,
|
|
past_user_inputs=["Going to the movies tonight - any suggestions?"],
|
|
generated_responses=["L"],
|
|
),
|
|
Conversation(
|
|
None, past_user_inputs=["What's the last book you have read?"], generated_responses=["L"]
|
|
),
|
|
],
|
|
)
|
|
|
|
# One conversation with history
|
|
conversation_2.add_user_input("Why do you recommend it?")
|
|
result = conversation_agent(conversation_2, max_length=64)
|
|
|
|
self.assertEqual(result, conversation_2)
|
|
self.assertEqual(
|
|
result,
|
|
Conversation(
|
|
None,
|
|
past_user_inputs=["What's the last book you have read?", "Why do you recommend it?"],
|
|
generated_responses=["L", "L"],
|
|
),
|
|
)
|
|
|
|
|
|
class ConversationalPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
|
|
pipeline_task = "conversational"
|
|
small_models = [] # Models tested without the @slow decorator
|
|
large_models = ["microsoft/DialoGPT-medium"] # Models tested with the @slow decorator
|
|
invalid_inputs = ["Hi there!", Conversation()]
|
|
|
|
def _test_pipeline(
|
|
self, nlp
|
|
): # override the default test method to check that the output is a `Conversation` object
|
|
self.assertIsNotNone(nlp)
|
|
|
|
# We need to recreate conversation for successive tests to pass as
|
|
# Conversation objects get *consumed* by the pipeline
|
|
conversation = Conversation("Hi there!")
|
|
mono_result = nlp(conversation)
|
|
self.assertIsInstance(mono_result, Conversation)
|
|
|
|
conversations = [Conversation("Hi there!"), Conversation("How are you?")]
|
|
multi_result = nlp(conversations)
|
|
self.assertIsInstance(multi_result, list)
|
|
self.assertIsInstance(multi_result[0], Conversation)
|
|
# Conversation have been consumed and are not valid anymore
|
|
# Inactive conversations passed to the pipeline raise a ValueError
|
|
self.assertRaises(ValueError, nlp, conversation)
|
|
self.assertRaises(ValueError, nlp, conversations)
|
|
|
|
for bad_input in self.invalid_inputs:
|
|
self.assertRaises(Exception, nlp, bad_input)
|
|
self.assertRaises(Exception, nlp, self.invalid_inputs)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_integration_torch_conversation(self):
|
|
# When
|
|
nlp = pipeline(task="conversational", device=DEFAULT_DEVICE_NUM)
|
|
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
|
|
conversation_2 = Conversation("What's the last book you have read?")
|
|
# Then
|
|
self.assertEqual(len(conversation_1.past_user_inputs), 0)
|
|
self.assertEqual(len(conversation_2.past_user_inputs), 0)
|
|
# When
|
|
result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
|
|
# Then
|
|
self.assertEqual(result, [conversation_1, conversation_2])
|
|
self.assertEqual(len(result[0].past_user_inputs), 1)
|
|
self.assertEqual(len(result[1].past_user_inputs), 1)
|
|
self.assertEqual(len(result[0].generated_responses), 1)
|
|
self.assertEqual(len(result[1].generated_responses), 1)
|
|
self.assertEqual(result[0].past_user_inputs[0], "Going to the movies tonight - any suggestions?")
|
|
self.assertEqual(result[0].generated_responses[0], "The Big Lebowski")
|
|
self.assertEqual(result[1].past_user_inputs[0], "What's the last book you have read?")
|
|
self.assertEqual(result[1].generated_responses[0], "The Last Question")
|
|
# When
|
|
conversation_2.add_user_input("Why do you recommend it?")
|
|
result = nlp(conversation_2, do_sample=False, max_length=1000)
|
|
# Then
|
|
self.assertEqual(result, conversation_2)
|
|
self.assertEqual(len(result.past_user_inputs), 2)
|
|
self.assertEqual(len(result.generated_responses), 2)
|
|
self.assertEqual(result.past_user_inputs[1], "Why do you recommend it?")
|
|
self.assertEqual(result.generated_responses[1], "It's a good book.")
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_integration_torch_conversation_truncated_history(self):
|
|
# When
|
|
nlp = pipeline(task="conversational", min_length_for_response=24, device=DEFAULT_DEVICE_NUM)
|
|
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
|
|
# Then
|
|
self.assertEqual(len(conversation_1.past_user_inputs), 0)
|
|
# When
|
|
result = nlp(conversation_1, do_sample=False, max_length=36)
|
|
# Then
|
|
self.assertEqual(result, conversation_1)
|
|
self.assertEqual(len(result.past_user_inputs), 1)
|
|
self.assertEqual(len(result.generated_responses), 1)
|
|
self.assertEqual(result.past_user_inputs[0], "Going to the movies tonight - any suggestions?")
|
|
self.assertEqual(result.generated_responses[0], "The Big Lebowski")
|
|
# When
|
|
conversation_1.add_user_input("Is it an action movie?")
|
|
result = nlp(conversation_1, do_sample=False, max_length=36)
|
|
# Then
|
|
self.assertEqual(result, conversation_1)
|
|
self.assertEqual(len(result.past_user_inputs), 2)
|
|
self.assertEqual(len(result.generated_responses), 2)
|
|
self.assertEqual(result.past_user_inputs[1], "Is it an action movie?")
|
|
self.assertEqual(result.generated_responses[1], "It's a comedy.")
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_integration_torch_conversation_dialogpt_input_ids(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
|
|
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
|
|
nlp = ConversationalPipeline(model=model, tokenizer=tokenizer)
|
|
|
|
conversation_1 = Conversation("hello")
|
|
inputs = nlp._parse_and_tokenize([conversation_1])
|
|
self.assertEqual(inputs["input_ids"].tolist(), [[31373, 50256]])
|
|
|
|
conversation_2 = Conversation("how are you ?", past_user_inputs=["hello"], generated_responses=["Hi there!"])
|
|
inputs = nlp._parse_and_tokenize([conversation_2])
|
|
self.assertEqual(
|
|
inputs["input_ids"].tolist(), [[31373, 50256, 17250, 612, 0, 50256, 4919, 389, 345, 5633, 50256]]
|
|
)
|
|
|
|
inputs = nlp._parse_and_tokenize([conversation_1, conversation_2])
|
|
self.assertEqual(
|
|
inputs["input_ids"].tolist(),
|
|
[
|
|
[31373, 50256, 50256, 50256, 50256, 50256, 50256, 50256, 50256, 50256, 50256],
|
|
[31373, 50256, 17250, 612, 0, 50256, 4919, 389, 345, 5633, 50256],
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_integration_torch_conversation_blenderbot_400M_input_ids(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")
|
|
nlp = ConversationalPipeline(model=model, tokenizer=tokenizer)
|
|
|
|
# test1
|
|
conversation_1 = Conversation("hello")
|
|
inputs = nlp._parse_and_tokenize([conversation_1])
|
|
self.assertEqual(inputs["input_ids"].tolist(), [[1710, 86, 2]])
|
|
|
|
# test2
|
|
conversation_1 = Conversation(
|
|
"I like lasagne.",
|
|
past_user_inputs=["hello"],
|
|
generated_responses=[
|
|
" Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie."
|
|
],
|
|
)
|
|
inputs = nlp._parse_and_tokenize([conversation_1])
|
|
self.assertEqual(
|
|
inputs["input_ids"].tolist(),
|
|
[
|
|
# This should be compared with the same conversation on ParlAI `safe_interactive` demo.
|
|
[
|
|
1710, # hello
|
|
86,
|
|
228, # Double space
|
|
228,
|
|
946,
|
|
304,
|
|
398,
|
|
6881,
|
|
558,
|
|
964,
|
|
38,
|
|
452,
|
|
315,
|
|
265,
|
|
6252,
|
|
452,
|
|
322,
|
|
968,
|
|
6884,
|
|
3146,
|
|
278,
|
|
306,
|
|
265,
|
|
617,
|
|
87,
|
|
388,
|
|
75,
|
|
341,
|
|
286,
|
|
521,
|
|
21,
|
|
228, # Double space
|
|
228,
|
|
281, # I like lasagne.
|
|
398,
|
|
6881,
|
|
558,
|
|
964,
|
|
21,
|
|
2, # EOS
|
|
]
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_integration_torch_conversation_blenderbot_400M(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")
|
|
nlp = ConversationalPipeline(model=model, tokenizer=tokenizer)
|
|
|
|
conversation_1 = Conversation("hello")
|
|
result = nlp(
|
|
conversation_1,
|
|
)
|
|
self.assertEqual(
|
|
result.generated_responses[0],
|
|
# ParlAI implementation output, we have a different one, but it's our
|
|
# second best, you can check by using num_return_sequences=10
|
|
# " Hello! How are you? I'm just getting ready to go to work, how about you?",
|
|
" Hello! How are you doing today? I just got back from a walk with my dog.",
|
|
)
|
|
|
|
conversation_1 = Conversation("Lasagne hello")
|
|
result = nlp(conversation_1, encoder_no_repeat_ngram_size=3)
|
|
self.assertEqual(
|
|
result.generated_responses[0],
|
|
" Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie.",
|
|
)
|
|
|
|
conversation_1 = Conversation(
|
|
"Lasagne hello Lasagne is my favorite Italian dish. Do you like lasagne? I like lasagne."
|
|
)
|
|
result = nlp(
|
|
conversation_1,
|
|
encoder_no_repeat_ngram_size=3,
|
|
)
|
|
self.assertEqual(
|
|
result.generated_responses[0],
|
|
" Me too. I like how it can be topped with vegetables, meats, and condiments.",
|
|
)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_integration_torch_conversation_encoder_decoder(self):
|
|
# When
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot_small-90M")
|
|
nlp = ConversationalPipeline(model=model, tokenizer=tokenizer, device=DEFAULT_DEVICE_NUM)
|
|
|
|
conversation_1 = Conversation("My name is Sarah and I live in London")
|
|
conversation_2 = Conversation("Going to the movies tonight, What movie would you recommend? ")
|
|
# Then
|
|
self.assertEqual(len(conversation_1.past_user_inputs), 0)
|
|
self.assertEqual(len(conversation_2.past_user_inputs), 0)
|
|
# When
|
|
result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
|
|
# Then
|
|
self.assertEqual(result, [conversation_1, conversation_2])
|
|
self.assertEqual(len(result[0].past_user_inputs), 1)
|
|
self.assertEqual(len(result[1].past_user_inputs), 1)
|
|
self.assertEqual(len(result[0].generated_responses), 1)
|
|
self.assertEqual(len(result[1].generated_responses), 1)
|
|
self.assertEqual(result[0].past_user_inputs[0], "My name is Sarah and I live in London")
|
|
self.assertEqual(
|
|
result[0].generated_responses[0],
|
|
"hi sarah, i live in london as well. do you have any plans for the weekend?",
|
|
)
|
|
self.assertEqual(
|
|
result[1].past_user_inputs[0], "Going to the movies tonight, What movie would you recommend? "
|
|
)
|
|
self.assertEqual(
|
|
result[1].generated_responses[0], "i don't know... i'm not really sure. what movie are you going to see?"
|
|
)
|
|
# When
|
|
conversation_1.add_user_input("Not yet, what about you?")
|
|
conversation_2.add_user_input("What's your name?")
|
|
result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
|
|
# Then
|
|
self.assertEqual(result, [conversation_1, conversation_2])
|
|
self.assertEqual(len(result[0].past_user_inputs), 2)
|
|
self.assertEqual(len(result[1].past_user_inputs), 2)
|
|
self.assertEqual(len(result[0].generated_responses), 2)
|
|
self.assertEqual(len(result[1].generated_responses), 2)
|
|
self.assertEqual(result[0].past_user_inputs[1], "Not yet, what about you?")
|
|
self.assertEqual(result[0].generated_responses[1], "i don't have any plans yet. i'm not sure what to do yet.")
|
|
self.assertEqual(result[1].past_user_inputs[1], "What's your name?")
|
|
self.assertEqual(result[1].generated_responses[1], "i don't have a name, but i'm going to see a horror movie.")
|