# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ( AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, Conversation, ConversationalPipeline, is_torch_available, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_torch, slow, torch_device from .test_pipelines_common import MonoInputPipelineCommonMixin if is_torch_available(): import torch from transformers.models.gpt2 import GPT2Config, GPT2LMHeadModel DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0 @is_pipeline_test class SimpleConversationPipelineTests(unittest.TestCase): def get_pipeline(self): # When config = GPT2Config( vocab_size=263, n_ctx=128, max_length=128, n_embd=64, n_layer=1, n_head=8, bos_token_id=256, eos_token_id=257, ) model = GPT2LMHeadModel(config) # Force model output to be L V, D = model.lm_head.weight.shape bias = torch.zeros(V, requires_grad=True) weight = torch.zeros((V, D), requires_grad=True) bias[76] = 1 model.lm_head.bias = torch.nn.Parameter(bias) model.lm_head.weight = torch.nn.Parameter(weight) # # Created with: # import tempfile # from tokenizers import Tokenizer, models # from transformers.tokenization_utils_fast import PreTrainedTokenizerFast # vocab = [(chr(i), i) for i in range(256)] # tokenizer = Tokenizer(models.Unigram(vocab)) # with tempfile.NamedTemporaryFile() as f: # tokenizer.save(f.name) # real_tokenizer = PreTrainedTokenizerFast(tokenizer_file=f.name, eos_token="", bos_token="") # real_tokenizer._tokenizer.save("dummy.json") # Special tokens are automatically added at load time. tokenizer = AutoTokenizer.from_pretrained("Narsil/small_conversational_test") conversation_agent = pipeline( task="conversational", device=DEFAULT_DEVICE_NUM, model=model, tokenizer=tokenizer ) return conversation_agent @require_torch def test_integration_torch_conversation(self): conversation_agent = self.get_pipeline() conversation_1 = Conversation("Going to the movies tonight - any suggestions?") conversation_2 = Conversation("What's the last book you have read?") self.assertEqual(len(conversation_1.past_user_inputs), 0) self.assertEqual(len(conversation_2.past_user_inputs), 0) result = conversation_agent([conversation_1, conversation_2], max_length=48) # Two conversations in one pass self.assertEqual(result, [conversation_1, conversation_2]) self.assertEqual( result, [ Conversation( None, past_user_inputs=["Going to the movies tonight - any suggestions?"], generated_responses=["L"], ), Conversation( None, past_user_inputs=["What's the last book you have read?"], generated_responses=["L"] ), ], ) # One conversation with history conversation_2.add_user_input("Why do you recommend it?") result = conversation_agent(conversation_2, max_length=64) self.assertEqual(result, conversation_2) self.assertEqual( result, Conversation( None, past_user_inputs=["What's the last book you have read?", "Why do you recommend it?"], generated_responses=["L", "L"], ), ) class ConversationalPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase): pipeline_task = "conversational" small_models = [] # Models tested without the @slow decorator large_models = ["microsoft/DialoGPT-medium"] # Models tested with the @slow decorator invalid_inputs = ["Hi there!", Conversation()] def _test_pipeline( self, nlp ): # override the default test method to check that the output is a `Conversation` object self.assertIsNotNone(nlp) # We need to recreate conversation for successive tests to pass as # Conversation objects get *consumed* by the pipeline conversation = Conversation("Hi there!") mono_result = nlp(conversation) self.assertIsInstance(mono_result, Conversation) conversations = [Conversation("Hi there!"), Conversation("How are you?")] multi_result = nlp(conversations) self.assertIsInstance(multi_result, list) self.assertIsInstance(multi_result[0], Conversation) # Conversation have been consumed and are not valid anymore # Inactive conversations passed to the pipeline raise a ValueError self.assertRaises(ValueError, nlp, conversation) self.assertRaises(ValueError, nlp, conversations) for bad_input in self.invalid_inputs: self.assertRaises(Exception, nlp, bad_input) self.assertRaises(Exception, nlp, self.invalid_inputs) @require_torch @slow def test_integration_torch_conversation(self): # When nlp = pipeline(task="conversational", device=DEFAULT_DEVICE_NUM) conversation_1 = Conversation("Going to the movies tonight - any suggestions?") conversation_2 = Conversation("What's the last book you have read?") # Then self.assertEqual(len(conversation_1.past_user_inputs), 0) self.assertEqual(len(conversation_2.past_user_inputs), 0) # When result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000) # Then self.assertEqual(result, [conversation_1, conversation_2]) self.assertEqual(len(result[0].past_user_inputs), 1) self.assertEqual(len(result[1].past_user_inputs), 1) self.assertEqual(len(result[0].generated_responses), 1) self.assertEqual(len(result[1].generated_responses), 1) self.assertEqual(result[0].past_user_inputs[0], "Going to the movies tonight - any suggestions?") self.assertEqual(result[0].generated_responses[0], "The Big Lebowski") self.assertEqual(result[1].past_user_inputs[0], "What's the last book you have read?") self.assertEqual(result[1].generated_responses[0], "The Last Question") # When conversation_2.add_user_input("Why do you recommend it?") result = nlp(conversation_2, do_sample=False, max_length=1000) # Then self.assertEqual(result, conversation_2) self.assertEqual(len(result.past_user_inputs), 2) self.assertEqual(len(result.generated_responses), 2) self.assertEqual(result.past_user_inputs[1], "Why do you recommend it?") self.assertEqual(result.generated_responses[1], "It's a good book.") @require_torch @slow def test_integration_torch_conversation_truncated_history(self): # When nlp = pipeline(task="conversational", min_length_for_response=24, device=DEFAULT_DEVICE_NUM) conversation_1 = Conversation("Going to the movies tonight - any suggestions?") # Then self.assertEqual(len(conversation_1.past_user_inputs), 0) # When result = nlp(conversation_1, do_sample=False, max_length=36) # Then self.assertEqual(result, conversation_1) self.assertEqual(len(result.past_user_inputs), 1) self.assertEqual(len(result.generated_responses), 1) self.assertEqual(result.past_user_inputs[0], "Going to the movies tonight - any suggestions?") self.assertEqual(result.generated_responses[0], "The Big Lebowski") # When conversation_1.add_user_input("Is it an action movie?") result = nlp(conversation_1, do_sample=False, max_length=36) # Then self.assertEqual(result, conversation_1) self.assertEqual(len(result.past_user_inputs), 2) self.assertEqual(len(result.generated_responses), 2) self.assertEqual(result.past_user_inputs[1], "Is it an action movie?") self.assertEqual(result.generated_responses[1], "It's a comedy.") @require_torch @slow def test_integration_torch_conversation_dialogpt_input_ids(self): tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small") nlp = ConversationalPipeline(model=model, tokenizer=tokenizer) conversation_1 = Conversation("hello") inputs = nlp._parse_and_tokenize([conversation_1]) self.assertEqual(inputs["input_ids"].tolist(), [[31373, 50256]]) conversation_2 = Conversation("how are you ?", past_user_inputs=["hello"], generated_responses=["Hi there!"]) inputs = nlp._parse_and_tokenize([conversation_2]) self.assertEqual( inputs["input_ids"].tolist(), [[31373, 50256, 17250, 612, 0, 50256, 4919, 389, 345, 5633, 50256]] ) inputs = nlp._parse_and_tokenize([conversation_1, conversation_2]) self.assertEqual( inputs["input_ids"].tolist(), [ [31373, 50256, 50256, 50256, 50256, 50256, 50256, 50256, 50256, 50256, 50256], [31373, 50256, 17250, 612, 0, 50256, 4919, 389, 345, 5633, 50256], ], ) @require_torch @slow def test_integration_torch_conversation_blenderbot_400M_input_ids(self): tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill") nlp = ConversationalPipeline(model=model, tokenizer=tokenizer) # test1 conversation_1 = Conversation("hello") inputs = nlp._parse_and_tokenize([conversation_1]) self.assertEqual(inputs["input_ids"].tolist(), [[1710, 86, 2]]) # test2 conversation_1 = Conversation( "I like lasagne.", past_user_inputs=["hello"], generated_responses=[ " Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie." ], ) inputs = nlp._parse_and_tokenize([conversation_1]) self.assertEqual( inputs["input_ids"].tolist(), [ # This should be compared with the same conversation on ParlAI `safe_interactive` demo. [ 1710, # hello 86, 228, # Double space 228, 946, 304, 398, 6881, 558, 964, 38, 452, 315, 265, 6252, 452, 322, 968, 6884, 3146, 278, 306, 265, 617, 87, 388, 75, 341, 286, 521, 21, 228, # Double space 228, 281, # I like lasagne. 398, 6881, 558, 964, 21, 2, # EOS ] ], ) @require_torch @slow def test_integration_torch_conversation_blenderbot_400M(self): tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill") nlp = ConversationalPipeline(model=model, tokenizer=tokenizer) conversation_1 = Conversation("hello") result = nlp( conversation_1, ) self.assertEqual( result.generated_responses[0], # ParlAI implementation output, we have a different one, but it's our # second best, you can check by using num_return_sequences=10 # " Hello! How are you? I'm just getting ready to go to work, how about you?", " Hello! How are you doing today? I just got back from a walk with my dog.", ) conversation_1 = Conversation("Lasagne hello") result = nlp(conversation_1, encoder_no_repeat_ngram_size=3) self.assertEqual( result.generated_responses[0], " Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie.", ) conversation_1 = Conversation( "Lasagne hello Lasagne is my favorite Italian dish. Do you like lasagne? I like lasagne." ) result = nlp( conversation_1, encoder_no_repeat_ngram_size=3, ) self.assertEqual( result.generated_responses[0], " Me too. I like how it can be topped with vegetables, meats, and condiments.", ) @require_torch @slow def test_integration_torch_conversation_encoder_decoder(self): # When tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot_small-90M") nlp = ConversationalPipeline(model=model, tokenizer=tokenizer, device=DEFAULT_DEVICE_NUM) conversation_1 = Conversation("My name is Sarah and I live in London") conversation_2 = Conversation("Going to the movies tonight, What movie would you recommend? ") # Then self.assertEqual(len(conversation_1.past_user_inputs), 0) self.assertEqual(len(conversation_2.past_user_inputs), 0) # When result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000) # Then self.assertEqual(result, [conversation_1, conversation_2]) self.assertEqual(len(result[0].past_user_inputs), 1) self.assertEqual(len(result[1].past_user_inputs), 1) self.assertEqual(len(result[0].generated_responses), 1) self.assertEqual(len(result[1].generated_responses), 1) self.assertEqual(result[0].past_user_inputs[0], "My name is Sarah and I live in London") self.assertEqual( result[0].generated_responses[0], "hi sarah, i live in london as well. do you have any plans for the weekend?", ) self.assertEqual( result[1].past_user_inputs[0], "Going to the movies tonight, What movie would you recommend? " ) self.assertEqual( result[1].generated_responses[0], "i don't know... i'm not really sure. what movie are you going to see?" ) # When conversation_1.add_user_input("Not yet, what about you?") conversation_2.add_user_input("What's your name?") result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000) # Then self.assertEqual(result, [conversation_1, conversation_2]) self.assertEqual(len(result[0].past_user_inputs), 2) self.assertEqual(len(result[1].past_user_inputs), 2) self.assertEqual(len(result[0].generated_responses), 2) self.assertEqual(len(result[1].generated_responses), 2) self.assertEqual(result[0].past_user_inputs[1], "Not yet, what about you?") self.assertEqual(result[0].generated_responses[1], "i don't have any plans yet. i'm not sure what to do yet.") self.assertEqual(result[1].past_user_inputs[1], "What's your name?") self.assertEqual(result[1].generated_responses[1], "i don't have a name, but i'm going to see a horror movie.")