mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-08 07:10:06 +06:00

* memory tracker metrics * go back to eval for somewhat consistency * handle no-gpu case * deal with stackable eval calls * restore callback order * style * simplify the API * add test * docs * consistently use eval_ prefix * improve docs * Update src/transformers/trainer_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * rename method * style Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
165 lines
5.4 KiB
Python
165 lines
5.4 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
from transformers.integrations import is_deepspeed_available
|
|
from transformers.testing_utils import (
|
|
CaptureStd,
|
|
TestCasePlus,
|
|
execute_subprocess_async,
|
|
get_gpu_count,
|
|
mockenv,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
)
|
|
from transformers.trainer_utils import set_seed
|
|
|
|
|
|
set_seed(42)
|
|
MBART_TINY = "sshleifer/tiny-mbart"
|
|
|
|
|
|
def load_json(path):
|
|
with open(path) as f:
|
|
return json.load(f)
|
|
|
|
|
|
# a candidate for testing_utils
|
|
def require_deepspeed(test_case):
|
|
"""
|
|
Decorator marking a test that requires deepspeed
|
|
"""
|
|
if not is_deepspeed_available():
|
|
return unittest.skip("test requires deepspeed")(test_case)
|
|
else:
|
|
return test_case
|
|
|
|
|
|
@slow
|
|
@require_deepspeed
|
|
@require_torch_gpu
|
|
class TestDeepSpeed(TestCasePlus):
|
|
|
|
# this setup emulates a notebook where a launcher needs to be emulated by hand
|
|
@mockenv(MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1")
|
|
def test_fake_notebook_no_launcher(self):
|
|
sys.path.append(self.tests_dir_str)
|
|
from test_trainer import get_regression_trainer
|
|
|
|
del sys.path[-1] # restore
|
|
ds_config_file = f"{self.test_file_dir_str}/ds_config.json"
|
|
with CaptureStd() as cs:
|
|
trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_file)
|
|
trainer.train()
|
|
assert "DeepSpeed info" in cs.out, "expected DeepSpeed logger output but got none"
|
|
|
|
@require_torch_multi_gpu
|
|
def test_basic_distributed(self):
|
|
self.run_quick(distributed=True)
|
|
|
|
@require_torch_multi_gpu
|
|
def test_grad_acum(self):
|
|
self.run_quick(distributed=True, extra_args_str="--gradient_accumulation_steps 2")
|
|
|
|
def test_do_eval_no_train(self):
|
|
# we should not fail if train is skipped
|
|
output_dir = self.run_trainer(
|
|
eval_steps=1,
|
|
max_len=12,
|
|
model_name=MBART_TINY,
|
|
num_train_epochs=1,
|
|
distributed=False,
|
|
extra_args_str="--do_eval",
|
|
remove_args_str="--do_train",
|
|
)
|
|
val_metrics = load_json(os.path.join(output_dir, "eval_results.json"))
|
|
assert "eval_bleu" in val_metrics
|
|
|
|
# XXX: need to do better validation beyond just that the run was successful
|
|
def run_quick(self, distributed=True, extra_args_str=None, remove_args_str=None):
|
|
output_dir = self.run_trainer(
|
|
eval_steps=1,
|
|
max_len=12,
|
|
model_name=MBART_TINY,
|
|
num_train_epochs=1,
|
|
distributed=distributed,
|
|
extra_args_str=extra_args_str,
|
|
remove_args_str=remove_args_str,
|
|
)
|
|
train_metrics = load_json(os.path.join(output_dir, "train_results.json"))
|
|
assert "train_runtime" in train_metrics
|
|
|
|
def run_trainer(
|
|
self,
|
|
eval_steps: int,
|
|
max_len: str,
|
|
model_name: str,
|
|
num_train_epochs: int,
|
|
distributed: bool = True,
|
|
extra_args_str: str = None,
|
|
remove_args_str: str = None,
|
|
):
|
|
data_dir = self.examples_dir / "test_data/wmt_en_ro"
|
|
output_dir = self.get_auto_remove_tmp_dir()
|
|
args = f"""
|
|
--model_name_or_path {model_name}
|
|
--train_file {data_dir}/train.json
|
|
--validation_file {data_dir}/val.json
|
|
--output_dir {output_dir}
|
|
--overwrite_output_dir
|
|
--max_train_samples 8
|
|
--max_val_samples 8
|
|
--max_source_length {max_len}
|
|
--max_target_length {max_len}
|
|
--val_max_target_length {max_len}
|
|
--do_train
|
|
--num_train_epochs {str(num_train_epochs)}
|
|
--per_device_train_batch_size 4
|
|
--learning_rate 3e-3
|
|
--warmup_steps 8
|
|
--predict_with_generate
|
|
--logging_steps 0
|
|
--save_steps {str(eval_steps)}
|
|
--group_by_length
|
|
--label_smoothing_factor 0.1
|
|
--adafactor
|
|
--task translation
|
|
--target_lang ro_RO
|
|
--source_lang en_XX
|
|
""".split()
|
|
|
|
if extra_args_str is not None:
|
|
args.extend(extra_args_str.split())
|
|
|
|
if remove_args_str is not None:
|
|
remove_args = remove_args_str.split()
|
|
args = [x for x in args if x not in remove_args]
|
|
|
|
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config.json".split()
|
|
script = [f"{self.examples_dir_str}/seq2seq/run_seq2seq.py"]
|
|
num_gpus = get_gpu_count() if distributed else 1
|
|
launcher = f"deepspeed --num_gpus {num_gpus}".split()
|
|
|
|
cmd = launcher + script + args + ds_args
|
|
# keep for quick debug
|
|
# print(" ".join([f"PYTHONPATH={self.src_dir_str}"] +cmd)); die
|
|
execute_subprocess_async(cmd, env=self.get_env())
|
|
|
|
return output_dir
|