# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import sys import unittest from transformers.integrations import is_deepspeed_available from transformers.testing_utils import ( CaptureStd, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed set_seed(42) MBART_TINY = "sshleifer/tiny-mbart" def load_json(path): with open(path) as f: return json.load(f) # a candidate for testing_utils def require_deepspeed(test_case): """ Decorator marking a test that requires deepspeed """ if not is_deepspeed_available(): return unittest.skip("test requires deepspeed")(test_case) else: return test_case @slow @require_deepspeed @require_torch_gpu class TestDeepSpeed(TestCasePlus): # this setup emulates a notebook where a launcher needs to be emulated by hand @mockenv(MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1") def test_fake_notebook_no_launcher(self): sys.path.append(self.tests_dir_str) from test_trainer import get_regression_trainer del sys.path[-1] # restore ds_config_file = f"{self.test_file_dir_str}/ds_config.json" with CaptureStd() as cs: trainer = get_regression_trainer(local_rank=0, deepspeed=ds_config_file) trainer.train() assert "DeepSpeed info" in cs.out, "expected DeepSpeed logger output but got none" @require_torch_multi_gpu def test_basic_distributed(self): self.run_quick(distributed=True) @require_torch_multi_gpu def test_grad_acum(self): self.run_quick(distributed=True, extra_args_str="--gradient_accumulation_steps 2") def test_do_eval_no_train(self): # we should not fail if train is skipped output_dir = self.run_trainer( eval_steps=1, max_len=12, model_name=MBART_TINY, num_train_epochs=1, distributed=False, extra_args_str="--do_eval", remove_args_str="--do_train", ) val_metrics = load_json(os.path.join(output_dir, "eval_results.json")) assert "eval_bleu" in val_metrics # XXX: need to do better validation beyond just that the run was successful def run_quick(self, distributed=True, extra_args_str=None, remove_args_str=None): output_dir = self.run_trainer( eval_steps=1, max_len=12, model_name=MBART_TINY, num_train_epochs=1, distributed=distributed, extra_args_str=extra_args_str, remove_args_str=remove_args_str, ) train_metrics = load_json(os.path.join(output_dir, "train_results.json")) assert "train_runtime" in train_metrics def run_trainer( self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int, distributed: bool = True, extra_args_str: str = None, remove_args_str: str = None, ): data_dir = self.examples_dir / "test_data/wmt_en_ro" output_dir = self.get_auto_remove_tmp_dir() args = f""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_val_samples 8 --max_source_length {max_len} --max_target_length {max_len} --val_max_target_length {max_len} --do_train --num_train_epochs {str(num_train_epochs)} --per_device_train_batch_size 4 --learning_rate 3e-3 --warmup_steps 8 --predict_with_generate --logging_steps 0 --save_steps {str(eval_steps)} --group_by_length --label_smoothing_factor 0.1 --adafactor --task translation --target_lang ro_RO --source_lang en_XX """.split() if extra_args_str is not None: args.extend(extra_args_str.split()) if remove_args_str is not None: remove_args = remove_args_str.split() args = [x for x in args if x not in remove_args] ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config.json".split() script = [f"{self.examples_dir_str}/seq2seq/run_seq2seq.py"] num_gpus = get_gpu_count() if distributed else 1 launcher = f"deepspeed --num_gpus {num_gpus}".split() cmd = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"PYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(cmd, env=self.get_env()) return output_dir