transformers/examples/research_projects/pplm/README.md
Sylvain Gugger 783d7d2629
Reorganize examples (#9010)
* Reorganize example folder

* Continue reorganization

* Change requirements for tests

* Final cleanup

* Finish regroup with tests all passing

* Copyright

* Requirements and readme

* Make a full link for the documentation

* Address review comments

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Add symlink

* Reorg again

* Apply suggestions from code review

Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>

* Adapt title

* Update to new strucutre

* Remove test

* Update READMEs

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
2020-12-11 10:07:02 -05:00

55 lines
2.2 KiB
Markdown

# Plug and Play Language Models: a Simple Approach to Controlled Text Generation
Authors: [Sumanth Dathathri](https://dathath.github.io/), [Andrea Madotto](https://andreamad8.github.io/), Janice Lan, Jane Hung, Eric Frank, [Piero Molino](https://w4nderlu.st/), [Jason Yosinski](http://yosinski.com/), and [Rosanne Liu](http://www.rosanneliu.com/)
This folder contains the original code used to run the Plug and Play Language Model (PPLM).
Paper link: https://arxiv.org/abs/1912.02164
Blog link: https://eng.uber.com/pplm
Please check out the repo under uber-research for more information: https://github.com/uber-research/PPLM
## Setup
```bash
git clone https://github.com/huggingface/transformers && cd transformers
pip install .
pip install nltk torchtext # additional requirements.
cd examples/text-generation/pplm
```
## PPLM-BoW
### Example command for bag-of-words control
```bash
python run_pplm.py -B military --cond_text "The potato" --length 50 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.03 --window_length 5 --kl_scale 0.01 --gm_scale 0.99 --colorama --sample
```
### Tuning hyperparameters for bag-of-words control
1. Increase `--stepsize` to intensify topic control, and decrease its value to soften the control. `--stepsize 0` recovers the original uncontrolled GPT-2 model.
2. If the language being generated is repetitive (For e.g. "science science experiment experiment"), there are several options to consider: </br>
a) Reduce the `--stepsize` </br>
b) Increase `--kl_scale` (the KL-loss coefficient) or decrease `--gm_scale` (the gm-scaling term) </br>
c) Add `--grad-length xx` where xx is an (integer <= length, e.g. `--grad-length 30`).</br>
## PPLM-Discrim
### Example command for discriminator based sentiment control
```bash
python run_pplm.py -D sentiment --class_label 2 --cond_text "My dog died" --length 50 --gamma 1.0 --num_iterations 10 --num_samples 10 --stepsize 0.04 --kl_scale 0.01 --gm_scale 0.95 --sample
```
### Tuning hyperparameters for discriminator control
1. Increase `--stepsize` to intensify topic control, and decrease its value to soften the control. `--stepsize 0` recovers the original uncontrolled GPT-2 model.
2. Use `--class_label 3` for negative, and `--class_label 2` for positive