transformers/examples/research_projects/adversarial/README.md
Sylvain Gugger 783d7d2629
Reorganize examples (#9010)
* Reorganize example folder

* Continue reorganization

* Change requirements for tests

* Final cleanup

* Finish regroup with tests all passing

* Copyright

* Requirements and readme

* Make a full link for the documentation

* Address review comments

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Add symlink

* Reorg again

* Apply suggestions from code review

Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>

* Adapt title

* Update to new strucutre

* Remove test

* Update READMEs

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
2020-12-11 10:07:02 -05:00

39 lines
1.4 KiB
Markdown

## Adversarial evaluation of model performances
Here is an example on evaluating a model using adversarial evaluation of natural language inference with the Heuristic Analysis for NLI Systems (HANS) dataset [McCoy et al., 2019](https://arxiv.org/abs/1902.01007). The example was gracefully provided by [Nafise Sadat Moosavi](https://github.com/ns-moosavi).
The HANS dataset can be downloaded from [this location](https://github.com/tommccoy1/hans).
This is an example of using test_hans.py:
```bash
export HANS_DIR=path-to-hans
export MODEL_TYPE=type-of-the-model-e.g.-bert-roberta-xlnet-etc
export MODEL_PATH=path-to-the-model-directory-that-is-trained-on-NLI-e.g.-by-using-run_glue.py
python run_hans.py \
--task_name hans \
--model_type $MODEL_TYPE \
--do_eval \
--data_dir $HANS_DIR \
--model_name_or_path $MODEL_PATH \
--max_seq_length 128 \
--output_dir $MODEL_PATH \
```
This will create the hans_predictions.txt file in MODEL_PATH, which can then be evaluated using hans/evaluate_heur_output.py from the HANS dataset.
The results of the BERT-base model that is trained on MNLI using batch size 8 and the random seed 42 on the HANS dataset is as follows:
```bash
Heuristic entailed results:
lexical_overlap: 0.9702
subsequence: 0.9942
constituent: 0.9962
Heuristic non-entailed results:
lexical_overlap: 0.199
subsequence: 0.0396
constituent: 0.118
```