transformers/examples/multiple-choice/README.md
Sylvain Gugger 9a25c5bd3a
Add new run_swag example (#9175)
* Add new run_swag example

* Add check

* Add sample

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Very important change to make Lysandre happy

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2020-12-18 14:19:24 -05:00

1.8 KiB

Multiple Choice

Based on the script run_swag.py.

Fine-tuning on SWAG

python examples/multiple-choice/run_swag.py \
--model_name_or_path roberta-base \
--do_train \
--do_eval \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--output_dir /tmp/swag_base \
--per_gpu_eval_batch_size=16 \
--per_device_train_batch_size=16 \
--overwrite_output

Training with the defined hyper-parameters yields the following results:

***** Eval results *****
eval_acc = 0.8338998300509847
eval_loss = 0.44457291918821606

Tensorflow

export SWAG_DIR=/path/to/swag_data_dir
python ./examples/multiple-choice/run_tf_multiple_choice.py \
--task_name swag \
--model_name_or_path bert-base-cased \
--do_train \
--do_eval \
--data_dir $SWAG_DIR \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--max_seq_length 80 \
--output_dir models_bert/swag_base \
--per_gpu_eval_batch_size=16 \
--per_device_train_batch_size=16 \
--logging-dir logs \
--gradient_accumulation_steps 2 \
--overwrite_output

Run it in colab

Open In Colab