mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* enable tp on CPU Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * get rank from cpu Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * update Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * enable TP tests Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix comment Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * em print Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix model id Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix conflict Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix index and add doc Signed-off-by: jiqing-feng <jiqing.feng@intel.com> --------- Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
95 lines
3.3 KiB
Python
95 lines
3.3 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import subprocess
|
|
import tempfile
|
|
import textwrap
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import (
|
|
TestCasePlus,
|
|
get_torch_dist_unique_port,
|
|
require_torch_multi_gpu,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
# RUN_SLOW=1 pytest -sv tests/tensor_parallel/test_tensor_parallel.py
|
|
class TestTensorParallel(TestCasePlus):
|
|
nproc_per_node = 2
|
|
|
|
def torchrun(self, script: str):
|
|
"""Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary."""
|
|
with tempfile.NamedTemporaryFile(mode="w+", suffix=".py") as tmp:
|
|
tmp.write(script)
|
|
tmp.flush()
|
|
tmp.seek(0)
|
|
cmd = (
|
|
f"torchrun --nproc_per_node {self.nproc_per_node} --master_port {get_torch_dist_unique_port()} {tmp.name}"
|
|
).split()
|
|
|
|
# Note that the subprocess will be waited for here, and raise an error if not successful
|
|
try:
|
|
_ = subprocess.run(cmd, capture_output=True, env=self.get_env(), text=True, check=True)
|
|
except subprocess.CalledProcessError as e:
|
|
raise Exception(f"The following error was captured: {e.stderr}")
|
|
|
|
def test_model_forward(self):
|
|
script_to_run = textwrap.dedent(
|
|
"""
|
|
import torch
|
|
import os
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
model_id = "JackFram/llama-68m"
|
|
|
|
rank = int(os.environ["RANK"])
|
|
world_size = int(os.environ["WORLD_SIZE"])
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", tp_plan="auto")
|
|
torch.distributed.barrier()
|
|
|
|
has_dtensor = 0
|
|
for name, parameter in model.named_parameters():
|
|
if isinstance(parameter.data, torch.distributed.tensor.DTensor):
|
|
has_dtensor = 1
|
|
break
|
|
|
|
assert has_dtensor == 1, "TP model must has DTensor"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
prompt = "Can I help"
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
|
outputs = model(inputs)
|
|
|
|
next_token_logits = outputs[0][:, -1, :]
|
|
next_token = torch.argmax(next_token_logits, dim=-1)
|
|
response = tokenizer.decode(next_token)
|
|
assert response == "with"
|
|
|
|
torch.distributed.barrier()
|
|
torch.distributed.destroy_process_group()
|
|
"""
|
|
)
|
|
self.torchrun(script_to_run)
|
|
|
|
|
|
@require_torch_multi_gpu
|
|
class TestTensorParallelCuda(TestTensorParallel):
|
|
nproc_per_node = torch.cuda.device_count()
|