mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
enable tp on CPU (#36299)
* enable tp on CPU Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * get rank from cpu Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * update Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * enable TP tests Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix comment Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * em print Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix model id Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix conflict Signed-off-by: jiqing-feng <jiqing.feng@intel.com> * fix index and add doc Signed-off-by: jiqing-feng <jiqing.feng@intel.com> --------- Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
This commit is contained in:
parent
4705b04c74
commit
286393fbb1
@ -44,11 +44,6 @@ import os
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
# initialize distributed environment
|
||||
rank = int(os.environ["RANK"])
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.cuda.set_device(device)
|
||||
torch.distributed.init_process_group("nccl", device_id=device)
|
||||
|
||||
# enable tensor parallelism
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
@ -59,7 +54,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
||||
# prepare input tokens
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
||||
prompt = "Can I help"
|
||||
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
||||
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
||||
|
||||
# distributed run
|
||||
outputs = model(inputs)
|
||||
@ -71,6 +66,13 @@ Launch the inference script above on [torchrun](https://pytorch.org/docs/stable/
|
||||
torchrun --nproc-per-node 4 demo.py
|
||||
```
|
||||
|
||||
For CPU, please binding different socket on each rank. For example, if you are using Intel 4th Gen Xeon:
|
||||
```bash
|
||||
export OMP_NUM_THREADS=56
|
||||
numactl -C 0-55 -m 0 torchrun --nnodes=2 --node_rank=0 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 demo.py & numactl -C 56-111 -m 1 torchrun --nnodes=2 --node_rank=1 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 demo.py & wait
|
||||
```
|
||||
The CPU benchmark data will be released soon.
|
||||
|
||||
You can benefit from considerable speed ups for inference, especially for inputs with large batch size or long sequences.
|
||||
|
||||
For a single forward pass on [Llama](./model_doc/llama) with a sequence length of 512 and various batch sizes, you can expect the following speed ups.
|
||||
|
@ -774,7 +774,8 @@ def _load_state_dict_into_meta_model(
|
||||
"""
|
||||
tensor_device = "cpu"
|
||||
if device_map is not None and device_map.get("", None) is not None:
|
||||
tensor_device = device_map[""].index if isinstance(device_map[""], torch.device) else device_map[""]
|
||||
if device_map[""] not in ("cpu", torch.device("cpu")):
|
||||
tensor_device = device_map[""].index if isinstance(device_map[""], torch.device) else device_map[""]
|
||||
if device_map is not None:
|
||||
device_map_regex = "|".join([re.escape(k) for k in sorted(device_map.keys(), reverse=True)])
|
||||
|
||||
@ -4110,24 +4111,34 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
|
||||
if tp_plan is not None:
|
||||
if not is_torch_greater_or_equal("2.5"):
|
||||
raise EnvironmentError("tensor parallel is only supported for `torch>=2.5`.")
|
||||
|
||||
# Detect the accelerator on the machine. If no accelerator is available, it returns CPU.
|
||||
device_type = torch._C._get_accelerator().type
|
||||
|
||||
if not torch.distributed.is_initialized():
|
||||
try:
|
||||
rank = int(os.environ["RANK"])
|
||||
world_size = int(os.environ["WORLD_SIZE"])
|
||||
torch.distributed.init_process_group(
|
||||
"nccl", rank=rank, world_size=world_size, init_method="env://"
|
||||
)
|
||||
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
|
||||
if device_type == "cuda":
|
||||
torch.distributed.init_process_group(
|
||||
"nccl", rank=rank, world_size=world_size, init_method="env://"
|
||||
)
|
||||
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
|
||||
elif device_type == "cpu":
|
||||
cpu_backend = "ccl" if int(os.environ.get("CCL_WORKER_COUNT", 0)) else "gloo"
|
||||
torch.distributed.init_process_group(cpu_backend, rank=rank, world_size=world_size)
|
||||
|
||||
except Exception as e:
|
||||
raise EnvironmentError(
|
||||
"We tried to initialize torch.distributed for you, but it failed, make"
|
||||
"sure you init torch distributed in your script to use `tp_plan='auto'`"
|
||||
) from e
|
||||
|
||||
# Detect the accelerator on the machine. If no accelerator is available, it returns CPU.
|
||||
device_type = torch._C._get_accelerator().type
|
||||
tp_device = torch.device(device_type, torch.cuda.current_device())
|
||||
if tp_device.index > 0:
|
||||
# Get device with index assuming equal number of devices per host
|
||||
index = None if device_type == "cpu" else torch.cuda.current_device()
|
||||
tp_device = torch.device(device_type, index)
|
||||
|
||||
if index is not None and index > 0:
|
||||
import sys
|
||||
|
||||
sys.stdout = open(os.devnull, "w")
|
||||
|
@ -12,18 +12,13 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import tempfile
|
||||
import textwrap
|
||||
|
||||
# TORCH_LOGS=+dtensor CUDA_LAUNCH_BLOCKING=1 TORCH_USE_CUDA_DSA=1 PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py
|
||||
from transformers import is_torch_available
|
||||
from transformers.models.llama.configuration_llama import LlamaConfig
|
||||
from transformers.models.llama.modeling_llama import LlamaModel
|
||||
from transformers.testing_utils import (
|
||||
TestCasePlus,
|
||||
execute_subprocess_async,
|
||||
get_torch_dist_unique_port,
|
||||
require_torch_multi_gpu,
|
||||
)
|
||||
@ -33,7 +28,10 @@ if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
# RUN_SLOW=1 pytest -sv tests/tensor_parallel/test_tensor_parallel.py
|
||||
class TestTensorParallel(TestCasePlus):
|
||||
nproc_per_node = 2
|
||||
|
||||
def torchrun(self, script: str):
|
||||
"""Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary."""
|
||||
with tempfile.NamedTemporaryFile(mode="w+", suffix=".py") as tmp:
|
||||
@ -41,7 +39,7 @@ class TestTensorParallel(TestCasePlus):
|
||||
tmp.flush()
|
||||
tmp.seek(0)
|
||||
cmd = (
|
||||
f"torchrun --nproc_per_node {torch.cuda.device_count()} --master_port {get_torch_dist_unique_port()} {tmp.name}"
|
||||
f"torchrun --nproc_per_node {self.nproc_per_node} --master_port {get_torch_dist_unique_port()} {tmp.name}"
|
||||
).split()
|
||||
|
||||
# Note that the subprocess will be waited for here, and raise an error if not successful
|
||||
@ -50,44 +48,39 @@ class TestTensorParallel(TestCasePlus):
|
||||
except subprocess.CalledProcessError as e:
|
||||
raise Exception(f"The following error was captured: {e.stderr}")
|
||||
|
||||
@require_torch_multi_gpu
|
||||
def test_tp(self):
|
||||
distributed_args = f"""--nproc_per_node={torch.cuda.device_count()}
|
||||
--master_port={get_torch_dist_unique_port()}
|
||||
{self.test_file_dir}/test_tp.py
|
||||
""".split()
|
||||
output_dir = self.get_auto_remove_tmp_dir()
|
||||
args = f"--output_dir {output_dir} --report_to none".split()
|
||||
cmd = ["torchrun"] + distributed_args + args
|
||||
print(cmd)
|
||||
execute_subprocess_async(cmd, env=self.get_env())
|
||||
# successful return here == success - any errors would have caused an error in the sub-call
|
||||
|
||||
@require_torch_multi_gpu
|
||||
def test_loading_memory_consumption(self):
|
||||
def test_model_forward(self):
|
||||
script_to_run = textwrap.dedent(
|
||||
"""
|
||||
import torch
|
||||
import os
|
||||
from transformers import AutoModelForCausalLM
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
model_id = "JackFram/llama-68m"
|
||||
|
||||
rank = int(os.environ["RANK"])
|
||||
world_size = int(os.environ["WORLD_SIZE"])
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.distributed.init_process_group("nccl", device_id=device)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, tp_plan="auto")
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", tp_plan="auto")
|
||||
torch.distributed.barrier()
|
||||
|
||||
# The expected model memory footprint. We add 1 as not all the modules are split (e.g. the embeddings)
|
||||
expected_model_memory_per_device = (16 / world_size) + 1
|
||||
overhead_factor = 1.2
|
||||
has_dtensor = 0
|
||||
for name, parameter in model.named_parameters():
|
||||
if isinstance(parameter.data, torch.distributed.tensor.DTensor):
|
||||
has_dtensor = 1
|
||||
break
|
||||
|
||||
# Check that we do not use more than the expected sharded size during initialization
|
||||
if torch.cuda.max_memory_allocated(device) / 1024**3 > expected_model_memory_per_device * overhead_factor:
|
||||
raise ValueError("Loading the model used more than the expected fraction of model size per device")
|
||||
assert has_dtensor == 1, "TP model must has DTensor"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
prompt = "Can I help"
|
||||
|
||||
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
||||
outputs = model(inputs)
|
||||
|
||||
next_token_logits = outputs[0][:, -1, :]
|
||||
next_token = torch.argmax(next_token_logits, dim=-1)
|
||||
response = tokenizer.decode(next_token)
|
||||
assert response == "with"
|
||||
|
||||
torch.distributed.barrier()
|
||||
torch.distributed.destroy_process_group()
|
||||
@ -96,69 +89,6 @@ class TestTensorParallel(TestCasePlus):
|
||||
self.torchrun(script_to_run)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
|
||||
# CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/tp/test_tp.py
|
||||
# or
|
||||
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 ./tests/tp/test_tp.py
|
||||
|
||||
if not is_torch_available():
|
||||
exit(0)
|
||||
|
||||
# Test settings
|
||||
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
||||
bs = 1
|
||||
seqlen = 4096
|
||||
# Get distributed settings
|
||||
rank = int(os.environ["RANK"])
|
||||
world_size = int(os.environ["WORLD_SIZE"])
|
||||
|
||||
# Initialize distributed
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
torch.distributed.init_process_group("nccl", device_id=device)
|
||||
device_mesh = torch.distributed.init_device_mesh("cuda", (world_size,))
|
||||
|
||||
# Get model config
|
||||
config = LlamaConfig.from_pretrained(model_id)
|
||||
config.hidden_size = 2048
|
||||
config.attention_bias = False
|
||||
# Instantiate model
|
||||
with device:
|
||||
model = LlamaModel(config).to(dtype=torch.float16)
|
||||
|
||||
model.eval()
|
||||
# Tensor Parallel
|
||||
if world_size > 1:
|
||||
model.tensor_parallel(device_mesh)
|
||||
# Run model
|
||||
|
||||
inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device)
|
||||
|
||||
# Test cuda graphing explicitly
|
||||
with torch.cuda.device(device):
|
||||
print("Cuda graphing")
|
||||
with torch.no_grad():
|
||||
inputs = torch.randint(config.vocab_size, (bs, seqlen), device=device)
|
||||
# CUDA Graph setup
|
||||
s = torch.cuda.Stream(device=device)
|
||||
s.wait_stream(torch.cuda.current_stream())
|
||||
with torch.cuda.stream(s):
|
||||
for i in range(3):
|
||||
out = model(inputs)
|
||||
torch.cuda.current_stream().wait_stream(s)
|
||||
g = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(g):
|
||||
out = model(inputs)
|
||||
|
||||
for _ in range(2):
|
||||
g.replay()
|
||||
s.synchronize()
|
||||
|
||||
assert out.last_hidden_state.shape == torch.Size([bs, seqlen, config.hidden_size])
|
||||
|
||||
# Test compile
|
||||
with torch.no_grad():
|
||||
out = model(inputs)
|
||||
model.forward = torch.compile(model.forward, mode="reduce-overhead")
|
||||
out = model(inputs)
|
||||
out = model(inputs)
|
||||
@require_torch_multi_gpu
|
||||
class TestTensorParallelCuda(TestTensorParallel):
|
||||
nproc_per_node = torch.cuda.device_count()
|
||||
|
Loading…
Reference in New Issue
Block a user