mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* make SpeechT5 model by copying Wav2Vec2 * add paper to docs * whoops added docs in wrong file * remove SpeechT5Tokenizer + put CTC back in the name * remove deprecated class * remove unused docstring * delete SpeechT5FeatureExtractor, use Wav2Vec2FeatureExtractor instead * remove classes we don't need right now * initial stab at speech encoder prenet * add more speech encoder prenet stuff * improve SpeechEncoderPrenet * add encoder (not finished yet) * add relative position bias to self-attention * add encoder CTC layers * fix formatting * add decoder from BART, doesn't work yet * make it work with generate loop * wrap the encoder into a speech encoder class * wrap the decoder in a text decoder class * changed my mind * changed my mind again ;-) * load decoder weights, make it work * add weights for text decoder postnet * add SpeechT5ForCTC model that uses only the encoder * clean up EncoderLayer and DecoderLayer * implement _init_weights in SpeechT5PreTrainedModel * cleanup config + Encoder and Decoder * add head + cross attention masks * improve doc comments * fixup * more cleanup * more fixup * TextDecoderPrenet works now, thanks Kendall * add CTC loss * add placeholders for other pre/postnets * add type annotation * fix freeze_feature_encoder * set padding tokens to 0 in decoder attention mask * encoder attention mask downsampling * remove features_pen calculation * disable the padding tokens thing again * fixup * more fixup * code review fixes * rename encoder/decoder wrapper classes * allow checkpoints to be loaded into SpeechT5Model * put encoder into wrapper for CTC model * clean up conversion script * add encoder for TTS model * add speech decoder prenet * add speech decoder post-net * attempt to reconstruct the generation loop * add speech generation loop * clean up generate_speech * small tweaks * fix forward pass * enable always dropout on speech decoder prenet * sort declaration * rename models * fixup * fix copies * more fixup * make consistency checker happy * add Seq2SeqSpectrogramOutput class * doc comments * quick note about loss and labels * add HiFi-GAN implementation (from Speech2Speech PR) * rename file * add vocoder to TTS model * improve vocoder * working on tokenizer * more better tokenizer * add CTC tokenizer * fix decode and batch_code in CTC tokenizer * fix processor * two processors and feature extractors * use SpeechT5WaveformFeatureExtractor instead of Wav2Vec2 * cleanup * more cleanup * even more fixup * notebooks * fix log-mel spectrograms * support reduction factor * fixup * shift spectrograms to right to create decoder inputs * return correct labels * add labels for stop token prediction * fix doc comments * fixup * remove SpeechT5ForPreTraining * more fixup * update copyright headers * add usage examples * add SpeechT5ProcessorForCTC * fixup * push unofficial checkpoints to hub * initial version of tokenizer unit tests * add slow test * fix failing tests * tests for CTC tokenizer * finish CTC tokenizer tests * processor tests * initial test for feature extractors * tests for spectrogram feature extractor * fixup * more fixup * add decorators * require speech for tests * modeling tests * more tests for ASR model * fix imports * add fake tests for the other models * fixup * remove jupyter notebooks * add missing SpeechT5Model tests * add missing tests for SpeechT5ForCTC * add missing tests for SpeechT5ForTextToSpeech * sort tests by name * fix Hi-Fi GAN tests * fixup * add speech-to-speech model * refactor duplicate speech generation code * add processor for SpeechToSpeech model * add usage example * add tests for speech-to-speech model * fixup * enable gradient checkpointing for SpeechT5FeatureEncoder * code review * push_to_hub now takes repo_id * improve doc comments for HiFi-GAN config * add missing test * add integration tests * make number of layers in speech decoder prenet configurable * rename variable * rename variables * add auto classes for TTS and S2S * REMOVE CTC!!! * S2S processor does not support save/load_pretrained * fixup * these models are now in an auto mapping * fix doc links * rename HiFiGAN to HifiGan, remove separate config file * REMOVE auto classes * there can be only one * fixup * replace assert * reformat * feature extractor can process input and target at same time * update checkpoint names * fix commit hash
188 lines
7.2 KiB
Python
188 lines
7.2 KiB
Python
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tests for the SpeechT5 processors."""
|
|
|
|
import json
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import is_speech_available, is_torch_available
|
|
from transformers.models.speecht5 import SpeechT5Tokenizer
|
|
from transformers.testing_utils import get_tests_dir, require_torch, require_torchaudio
|
|
from transformers.utils import FEATURE_EXTRACTOR_NAME
|
|
|
|
|
|
if is_speech_available() and is_torch_available():
|
|
from transformers import SpeechT5FeatureExtractor, SpeechT5Processor
|
|
|
|
from .test_feature_extraction_speecht5 import floats_list
|
|
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model")
|
|
|
|
|
|
@require_torch
|
|
@require_torchaudio
|
|
class SpeechT5ProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
tokenizer = SpeechT5Tokenizer(SAMPLE_VOCAB)
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
feature_extractor_map = {
|
|
"feature_size": 1,
|
|
"padding_value": 0.0,
|
|
"sampling_rate": 16000,
|
|
"do_normalize": False,
|
|
"num_mel_bins": 80,
|
|
"hop_length": 16,
|
|
"win_length": 64,
|
|
"win_function": "hann_window",
|
|
"frame_signal_scale": 1.0,
|
|
"fmin": 80,
|
|
"fmax": 7600,
|
|
"mel_floor": 1e-10,
|
|
"reduction_factor": 2,
|
|
"return_attention_mask": True,
|
|
}
|
|
|
|
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
|
|
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
|
|
fp.write(json.dumps(feature_extractor_map) + "\n")
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return SpeechT5Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_feature_extractor(self, **kwargs):
|
|
return SpeechT5FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def test_save_load_pretrained_default(self):
|
|
tokenizer = self.get_tokenizer()
|
|
feature_extractor = self.get_feature_extractor()
|
|
|
|
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
processor = SpeechT5Processor.from_pretrained(self.tmpdirname)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor)
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = SpeechT5Processor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = SpeechT5Processor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor)
|
|
|
|
def test_feature_extractor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
raw_speech = floats_list((3, 1000))
|
|
|
|
input_feat_extract = feature_extractor(audio=raw_speech, return_tensors="np")
|
|
input_processor = processor(audio=raw_speech, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_feature_extractor_target(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
raw_speech = floats_list((3, 1000))
|
|
|
|
input_feat_extract = feature_extractor(audio_target=raw_speech, return_tensors="np")
|
|
input_processor = processor(audio_target=raw_speech, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
input_str = "This is a test string"
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
def test_tokenizer_target(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
input_str = "This is a test string"
|
|
|
|
encoded_processor = processor(text_target=input_str)
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
def test_tokenizer_decode(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|
|
|
|
def test_model_input_names(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
self.assertListEqual(
|
|
processor.model_input_names,
|
|
feature_extractor.model_input_names,
|
|
msg="`processor` and `feature_extractor` model input names do not match",
|
|
)
|