# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the SpeechT5 processors.""" import json import os import shutil import tempfile import unittest from transformers import is_speech_available, is_torch_available from transformers.models.speecht5 import SpeechT5Tokenizer from transformers.testing_utils import get_tests_dir, require_torch, require_torchaudio from transformers.utils import FEATURE_EXTRACTOR_NAME if is_speech_available() and is_torch_available(): from transformers import SpeechT5FeatureExtractor, SpeechT5Processor from .test_feature_extraction_speecht5 import floats_list SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_torch @require_torchaudio class SpeechT5ProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() tokenizer = SpeechT5Tokenizer(SAMPLE_VOCAB) tokenizer.save_pretrained(self.tmpdirname) feature_extractor_map = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16000, "do_normalize": False, "num_mel_bins": 80, "hop_length": 16, "win_length": 64, "win_function": "hann_window", "frame_signal_scale": 1.0, "fmin": 80, "fmax": 7600, "mel_floor": 1e-10, "reduction_factor": 2, "return_attention_mask": True, } self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME) with open(self.feature_extraction_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(feature_extractor_map) + "\n") def get_tokenizer(self, **kwargs): return SpeechT5Tokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return SpeechT5FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = SpeechT5Processor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = SpeechT5Processor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) processor = SpeechT5Processor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(audio=raw_speech, return_tensors="np") input_processor = processor(audio=raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_feature_extractor_target(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(audio_target=raw_speech, return_tensors="np") input_processor = processor(audio_target=raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_target(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text_target=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", )