
* toctree * not-doctested.txt * collapse sections * feedback * update * rewrite get started sections * fixes * fix * loading models * fix * customize models * share * fix link * contribute part 1 * contribute pt 2 * fix toctree * tokenization pt 1 * Add new model (#32615) * v1 - working version * fix * fix * fix * fix * rename to correct name * fix title * fixup * rename files * fix * add copied from on tests * rename to `FalconMamba` everywhere and fix bugs * fix quantization + accelerate * fix copies * add `torch.compile` support * fix tests * fix tests and add slow tests * copies on config * merge the latest changes * fix tests * add few lines about instruct * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix tests --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * "to be not" -> "not to be" (#32636) * "to be not" -> "not to be" * Update sam.md * Update trainer.py * Update modeling_utils.py * Update test_modeling_utils.py * Update test_modeling_utils.py * fix hfoption tag * tokenization pt. 2 * image processor * fix toctree * backbones * feature extractor * fix file name * processor * update not-doctested * update * make style * fix toctree * revision * make fixup * fix toctree * fix * make style * fix hfoption tag * pipeline * pipeline gradio * pipeline web server * add pipeline * fix toctree * not-doctested * prompting * llm optims * fix toctree * fixes * cache * text generation * fix * chat pipeline * chat stuff * xla * torch.compile * cpu inference * toctree * gpu inference * agents and tools * gguf/tiktoken * finetune * toctree * trainer * trainer pt 2 * optims * optimizers * accelerate * parallelism * fsdp * update * distributed cpu * hardware training * gpu training * gpu training 2 * peft * distrib debug * deepspeed 1 * deepspeed 2 * chat toctree * quant pt 1 * quant pt 2 * fix toctree * fix * fix * quant pt 3 * quant pt 4 * serialization * torchscript * scripts * tpu * review * model addition timeline * modular * more reviews * reviews * fix toctree * reviews reviews * continue reviews * more reviews * modular transformers * more review * zamba2 * fix * all frameworks * pytorch * supported model frameworks * flashattention * rm check_table * not-doctested.txt * rm check_support_list.py * feedback * updates/feedback * review * feedback * fix * update * feedback * updates * update --------- Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
5.0 KiB
Video Vision Transformer (ViViT)
Overview
The Vivit model was proposed in ViViT: A Video Vision Transformer by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. The paper proposes one of the first successful pure-transformer based set of models for video understanding.
The abstract from the paper is the following:
We present pure-transformer based models for video classification, drawing upon the recent success of such models in image classification. Our model extracts spatio-temporal tokens from the input video, which are then encoded by a series of transformer layers. In order to handle the long sequences of tokens encountered in video, we propose several, efficient variants of our model which factorise the spatial- and temporal-dimensions of the input. Although transformer-based models are known to only be effective when large training datasets are available, we show how we can effectively regularise the model during training and leverage pretrained image models to be able to train on comparatively small datasets. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple video classification benchmarks including Kinetics 400 and 600, Epic Kitchens, Something-Something v2 and Moments in Time, outperforming prior methods based on deep 3D convolutional networks.
This model was contributed by jegormeister. The original code (written in JAX) can be found here.
Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of torch.nn.functional
. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
official documentation
or the GPU Inference
page for more information.
SDPA is used by default for torch>=2.1.1
when an implementation is available, but you may also set
attn_implementation="sdpa"
in from_pretrained()
to explicitly request SDPA to be used.
from transformers import VivitModel
model = VivitModel.from_pretrained("google/vivit-b-16x2-kinetics400", attn_implementation="sdpa", torch_dtype=torch.float16)
...
For the best speedups, we recommend loading the model in half-precision (e.g. torch.float16
or torch.bfloat16
).
On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with float32
and google/vivit-b-16x2-kinetics400
model, we saw the following speedups during inference.
Training
num_training_steps | batch_size | is cuda | Speedup (%) | Eager peak mem (MB) | sdpa peak mem (MB) | Mem saving (%) |
---|---|---|---|---|---|---|
100 | 1 | True | 7.122 | 2575.28 | 5932.54 | 130.364 |
Inference
num_batches | batch_size | is cuda | is half | Speedup (%) | Mem eager (MB) | Mem BT (MB) | Mem saved (%) |
---|---|---|---|---|---|---|---|
20 | 1 | True | False | 15.422 | 715.807 | 317.079 | 125.75 |
20 | 2 | True | False | 17.146 | 1234.75 | 447.175 | 176.122 |
20 | 4 | True | False | 18.093 | 2275.82 | 709.864 | 220.6 |
20 | 8 | True | False | 19.284 | 4358.19 | 1233.24 | 253.393 |
VivitConfig
autodoc VivitConfig
VivitImageProcessor
autodoc VivitImageProcessor - preprocess
VivitModel
autodoc VivitModel - forward
VivitForVideoClassification
autodoc transformers.VivitForVideoClassification - forward