transformers/docs/source/en/model_doc/gemma3.md
Ryan Mullins 50d3530aa0
Gemma3 (#36658)
* Fix converter

* [Broken] Adds Gemma 3 to Hugging Face Transformers

* Consolidating Config and Processor params across impls

* Sorting out configuration parameters. Adds qk_norm before RoPE. Still not sure if RoPE is right.

* Additional plumbing for CausalLM and ConditionalGeneration variants

* incomplete draft of Orbax conversion script

* More complete checkpoint conversion

* Supporting Gemma 3 1B checkpoints

* Updating RoPE for multiple frequencies

* Adjustments to rotary embedder

* Proof of life for text-only operation

* Updating the conversion script to handle multimodal projection weights

* Fixing tet-only conversions

* Cleaner conversion script with multimodal support and a simpler processor

* Additional refatcors to the Gemma3Processor

* Simplified Processor to work over text representations

* Updated conversion script to join text and vision embeddings at converion time

* Logging for debugging

* Update src/transformers/models/gemma2/modeling_gemma2.py

Co-authored-by: Joshua Lochner <admin@xenova.com>

* Removed extraneous Config params

* Switching to fast tokenizer for checkpoint conversions

* isolating siglip for performance tetsing

* Minor changes for debugging tests against baselines

* Adding average pooling for soft tokens

* Updating processor code to enable simpler embedding interleaving for arbitrary number of images in prompts

* Updating conversion script for ShieldGemma 2 conversion compatibility

* Allow disable_compile to be provided as a kwarg

* Refresh from modular

* Updated conversion script and corrected sliding window

* Fix type mismatch in cache_position (#4)

* Fix dtype (#5)

* Fix type mismatch in cache_position

* Actually fix in the modular file

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>

---------

Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>

* fixes for embedding table overflow and missing image_soft_token_mask from Gemma3Processor

* Adding 2D pooling for image embeddings

* Revert "Adding 2D pooling for image embeddings"

This reverts commit 65350cf531.

* Gemma3 average pooling changed from 1D to 2D

* Major refactor to Gemma3MultimodalInputProjection

* Updating Gemm 3 Auto* registrations

* Add option to save Gemma 3 chat template with tokenizer during weights conversion

* Removing unused imports

* Moving out-of-vocab handling from Gemma3Processor to Gemma3ForConditionalGeneration

* Removing duplicate config property

* Removing final logit softcapping and 1-indexing of position ids

* Fixing image processor config and none --> None typo

* Fixing sliding window size for 1B

* Updating image_mean and image_std in Image Processor

* Attention masking changed to lower triangular

* Moving image special tokens to conversion script

* Mirror image processor defaults from conversion script into Gemma3ProcessorKwargs

* Remove special token variables from symbol space

* Moving image soft token mask computation from Gemma3Processor to Gemma3ForConditionalGeneration

* tie lm_head and embedding weights

Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>

* Correct tied weights in Gemma3CausalLM

* iterative bidirectional attention

* resolving merge conflicts

* Reverting to Gemma 2 HybridCache with sldiing window support and a sliding_window_pattern of 6

* Correcting RoPE scaling

* clean up first pass, dummy model geenration works

* final clean up before fixing tests

* causal lm test works, so fine

* Fix conversion

* Update src/transformers/models/gemma3/processing_gemma3.py

* model tests are happy

* processor tests are happy

* image processing tests added

* fixup

* Fix pre-processing in conversion

* Inputs merging

* Do not normalize vision embeddings

* Apply Ryan's (and team) changes to attention

* token type ids + mask

* template

* move embed scale, add rope scale, fix tests

* Add chat template to tokenizer

* Use prefix for causal model loading

* use existing code for sliding mask from gemma2

* self.embed_tokens already normalizes

* Correcting Gemma3TextConfig parameters in conversion script

* typo, modular overwrites my fixes

* enable device map for text model

* Conversion updates

* ultra nit: no einsums

* update image token

* copy deepcopy config + some docs

* add some test, still WIP

* Refactoring --include_chat_tempalte logic in converter

* Update src/transformers/models/gemma3/modular_gemma3.py

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Add eos tokens for instruct models

* dump so i can work on dgx

* Removing add_bos by default

* dump

* add fast im proc

* docs for PaS + fixup

* another fixup

* one more fixup

* fix tests

* Inverting prior BOS change

* ultra nit

* Reverting to Tokenizer saved with add_bos_token=True and chat template starting with BOS

* resize embeds, remove sqrt, add slow test outputs

* FA2 but quality is meh

* nit

* skip FA2, no idea what happened

* last bit for green CI

* please, green CI for docs

* T_T

* Fix for Gemma3 logits

* Support both options for system prompt

* Update src/transformers/models/gemma3/image_processing_gemma3_fast.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/gemma3.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/gemma3.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/gemma3.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/gemma3.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update docs/source/en/model_doc/gemma3.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Docs updates now that assets are live

* Style fixes

---------

Co-authored-by: Joshua Lochner <admin@xenova.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Aritra Roy Gosthipaty <aritra.born2fly@gmail.com>
Co-authored-by: Mayank Chaturvedi <imayank@google.com>
Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Co-authored-by: Lysandre <hi@lysand.re>
2025-03-12 09:06:17 +01:00

7.3 KiB

Gemma3

Overview

The Gemma 3 model was proposed in the Gemma 3 Techncial Report by Google. It is a vision-language model composed by a SigLIP vision encoder and a Gemma 2 language decoder, linked by a multimodal linear projection. It cuts an image into a fixed number of tokens, in the same way as SigLIP, as long as the image does not exceed certain aspect ratio. For images that exceed the given aspect ratio, it crops the image into multiple smaller patches and concatenates them with the base image embedding. One particularity is that the model uses bidirectional attention on all the image tokens. In addition, the model interleaves sliding window local attention with full causal attention in the language backbone, where each sixth layer is a full causal attention layer.

This model was contributed by Ryan Mullins, Raushan Turganbay Arthur Zucker, and Pedro Cuenca.

Usage tips

  • For image+text and image-only inputs use Gemma3ForConditionalGeneration.
  • For text-only inputs use Gemma3ForCausalLM for generation to avoid loading the vision tower.
  • Each sample can contain multiple images, and the number of images can vary between samples. However, make sure to pass correctly batched images to the processor, where each batch is a list of one or more images.
  • The text passed to the processor should have a <start_of_image> token wherever an image should be inserted.
  • The processor has its own apply_chat_template method to convert chat messages to model inputs. See the examples below for more details on how to use it.

Image cropping for high resolution images

The model supports cropping images into smaller patches when the image aspect ratio exceeds a certain value. By default the images are not cropped and only the base image is forwarded to the model. Users can set do_pan_and_scan=True to obtain several crops per image along with the base image to improve the quality in DocVQA or similar tasks requiring higher resolution images.

Pan and scan is an inference time optimization to handle images with skewed aspect ratios. When enabled, it improves performance on tasks related to document understanding, infographics, OCR, etc.


processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it", padding_side="left")

url = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
messages = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are a helpful assistant."}
        ]
    },
    {
        "role": "user", "content": [
            {"type": "image", "url": url},
            {"type": "text", "text": "What is shown in this image?"},
        ]
    },
]
inputs = processor.apply_chat_template(
    messages,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
    add_generation_prompt=True,
    do_pan_and_scan=True,
).to(model.device)

Usage Example

Single-image Inference

from transformers import AutoProcessor, Gemma3ForConditionalGeneration

model_id = "google/gemma-3-4b-it"
model = Gemma3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")

url = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
messages = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are a helpful assistant."}
        ]
    },
    {
        "role": "user", "content": [
            {"type": "image", "url": url},
            {"type": "text", "text": "What is shown in this image?"},
        ]
    },
]
inputs = processor.apply_chat_template(
    messages,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
    add_generation_prompt=True,
).to(model.device)

output = model.generate(**inputs, max_new_tokens=50)
print(processor.decode(output[0], skip_special_tokens=True)[inputs.input_ids.shape[1]: ])

Multi-image Inference

model_id = "google/gemma-3-4b-it"
model = Gemma3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")

url_cow = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
url_stop = "https://www.ilankelman.org/stopsigns/australia.jpg"
messages = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are a helpful assistant."}
        ]
    },
    {
        "role": "user", "content": [
            {"type": "image", "url": url_cow},
            {"type": "image", "url": url_stop},
            {"type": "text", "text": "Are these two images identical?"},
        ]
    },
]
inputs = processor.apply_chat_template(
    messages,
    tokenize=True,
    return_dict=True,
    return_tensors="pt",
    add_generation_prompt=True,
).to(model.device)

output = model.generate(**inputs, max_new_tokens=50)
print(processor.decode(output[0], skip_special_tokens=True)[inputs.input_ids.shape[1]: ])

Text-only inference

You can use the VLMs for text-only generation by omitting images in your input. However, you can also load the models in text-only mode as shown below. This will skip loading the vision tower and will save resources when you just need the LLM capabilities.

from transformers import AutoTokenizer, Gemma3ForCausalLM

model_id = "google/gemma-3-1b-it"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = Gemma3ForCausalLM.from_pretrained(model_id, device_map="auto")

input_ids = tokenizer("Write me a poem about Machine Learning.", return_tensors="pt").to(model.device)

outputs = model.generate(**input_ids, max_new_tokens=100)
text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

print(text)

Gemma3ImageProcessor

autodoc Gemma3ImageProcessor

Gemma3ImageProcessorFast

autodoc Gemma3ImageProcessorFast

Gemma3Processor

autodoc Gemma3Processor

Gemma3TextConfig

autodoc Gemma3TextConfig

Gemma3Config

autodoc Gemma3Config

Gemma3TextModel

autodoc Gemma3TextModel - forward

Gemma3ForCausalLM

autodoc Gemma3ForCausalLM - forward

Gemma3ForConditionalGeneration

autodoc Gemma3ForConditionalGeneration - forward