transformers/tests/test_video_processing_common.py
Yao Matrix 89542fb81c
enable more test cases on xpu (#38572)
* enable glm4 integration cases on XPU, set xpu expectation for blip2

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine wording

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine test case names

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* run

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* add gemma2 and chameleon

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix review comments

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Matrix YAO <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-06-06 09:29:51 +02:00

396 lines
18 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import tempfile
import warnings
import numpy as np
from packaging import version
from transformers import AutoVideoProcessor
from transformers.testing_utils import (
check_json_file_has_correct_format,
require_torch,
require_torch_accelerator,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
def prepare_video(num_frames, num_channels, width=10, height=10, return_tensors="pil"):
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
video = []
for i in range(num_frames):
video.append(np.random.randint(255, size=(width, height, num_channels), dtype=np.uint8))
if return_tensors == "pil":
# PIL expects the channel dimension as last dimension
video = [Image.fromarray(frame) for frame in video]
elif return_tensors == "torch":
# Torch images are typically in channels first format
video = torch.tensor(video).permute(0, 3, 1, 2)
elif return_tensors == "np":
# Numpy images are typically in channels last format
video = np.array(video)
return video
def prepare_video_inputs(
batch_size,
num_frames,
num_channels,
min_resolution,
max_resolution,
equal_resolution=False,
return_tensors="pil",
):
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
one specifies return_tensors="np", or a list of list of PyTorch tensors if one specifies return_tensors="torch".
One can specify whether the videos are of the same resolution or not.
"""
video_inputs = []
for i in range(batch_size):
if equal_resolution:
width = height = max_resolution
else:
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
video = prepare_video(
num_frames=num_frames,
num_channels=num_channels,
width=width,
height=height,
return_tensors=return_tensors,
)
video_inputs.append(video)
return video_inputs
class VideoProcessingTestMixin:
test_cast_dtype = None
fast_video_processing_class = None
video_processor_list = None
input_name = "pixel_values_videos"
def setUp(self):
video_processor_list = []
if self.fast_video_processing_class:
video_processor_list.append(self.fast_video_processing_class)
self.video_processor_list = video_processor_list
def test_video_processor_to_json_string(self):
for video_processing_class in self.video_processor_list:
video_processor = video_processing_class(**self.video_processor_dict)
obj = json.loads(video_processor.to_json_string())
for key, value in self.video_processor_dict.items():
self.assertEqual(obj[key], value)
def test_video_processor_to_json_file(self):
for video_processing_class in self.video_processor_list:
video_processor_first = video_processing_class(**self.video_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "video_processor.json")
video_processor_first.to_json_file(json_file_path)
video_processor_second = video_processing_class.from_json_file(json_file_path)
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())
def test_video_processor_from_dict_with_kwargs(self):
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict)
self.assertEqual(video_processor.size, {"shortest_edge": 20})
self.assertEqual(video_processor.crop_size, {"height": 18, "width": 18})
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42, crop_size=84)
self.assertEqual(video_processor.size, {"shortest_edge": 42})
self.assertEqual(video_processor.crop_size, {"height": 84, "width": 84})
def test_video_processor_from_and_save_pretrained(self):
for video_processing_class in self.video_processor_list:
video_processor_first = video_processing_class(**self.video_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = video_processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
video_processor_second = video_processing_class.from_pretrained(tmpdirname)
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())
def test_video_processor_save_load_with_autovideoprocessor(self):
for video_processing_class in self.video_processor_list:
video_processor_first = video_processing_class(**self.video_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = video_processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
use_fast = video_processing_class.__name__.endswith("Fast")
video_processor_second = AutoVideoProcessor.from_pretrained(tmpdirname, use_fast=use_fast)
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())
def test_init_without_params(self):
for video_processing_class in self.video_processor_list:
video_processor = video_processing_class()
self.assertIsNotNone(video_processor)
@slow
@require_torch_accelerator
@require_vision
def test_can_compile_fast_video_processor(self):
if self.fast_video_processing_class is None:
self.skipTest("Skipping compilation test as fast video processor is not defined")
if version.parse(torch.__version__) < version.parse("2.3"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
torch.compiler.reset()
video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False, return_tensors="torch")
video_processor = self.fast_video_processing_class(**self.video_processor_dict)
output_eager = video_processor(video_inputs, device=torch_device, return_tensors="pt")
video_processor = torch.compile(video_processor, mode="reduce-overhead")
output_compiled = video_processor(video_inputs, device=torch_device, return_tensors="pt")
torch.testing.assert_close(
output_eager[self.input_name], output_compiled[self.input_name], rtol=1e-4, atol=1e-4
)
@require_torch
@require_vision
def test_cast_dtype_device(self):
for video_processing_class in self.video_processor_list:
if self.test_cast_dtype is not None:
# Initialize video_processor
video_processor = video_processing_class(**self.video_processor_dict)
# create random PyTorch tensors
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="torch"
)
encoding = video_processor(video_inputs, return_tensors="pt")
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
self.assertEqual(encoding[self.input_name].dtype, torch.float32)
encoding = video_processor(video_inputs, return_tensors="pt").to(torch.float16)
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
self.assertEqual(encoding[self.input_name].dtype, torch.float16)
encoding = video_processor(video_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
self.assertEqual(encoding[self.input_name].dtype, torch.bfloat16)
with self.assertRaises(TypeError):
_ = video_processor(video_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
# Try with text + video feature
encoding = video_processor(video_inputs, return_tensors="pt")
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
encoding = encoding.to(torch.float16)
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
self.assertEqual(encoding[self.input_name].dtype, torch.float16)
self.assertEqual(encoding.input_ids.dtype, torch.long)
def test_call_pil(self):
for video_processing_class in self.video_processor_list:
# Initialize video_processing
video_processing = video_processing_class(**self.video_processor_dict)
video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False)
# Each video is a list of PIL Images
for video in video_inputs:
self.assertIsInstance(video[0], Image.Image)
# Test not batched input
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
self.assertEqual(
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
)
def test_call_numpy(self):
for video_processing_class in self.video_processor_list:
# Initialize video_processing
video_processing = video_processing_class(**self.video_processor_dict)
# create random numpy tensors
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="np"
)
for video in video_inputs:
self.assertIsInstance(video, np.ndarray)
# Test not batched input
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
self.assertEqual(
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
)
def test_call_pytorch(self):
for video_processing_class in self.video_processor_list:
# Initialize video_processing
video_processing = video_processing_class(**self.video_processor_dict)
# create random PyTorch tensors
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="torch"
)
for video in video_inputs:
self.assertIsInstance(video, torch.Tensor)
# Test not batched input
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
self.assertEqual(
tuple(encoded_videos.shape),
(self.video_processor_tester.batch_size, *expected_output_video_shape),
)
def test_nested_input(self):
"""Tests that the processor can work with nested list where each video is a list of arrays"""
for video_processing_class in self.video_processor_list:
video_processing = video_processing_class(**self.video_processor_dict)
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="np"
)
# Test not batched input
video_inputs = [list(video) for video in video_inputs]
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
self.assertEqual(
tuple(encoded_videos.shape),
(self.video_processor_tester.batch_size, *expected_output_video_shape),
)
def test_call_numpy_4_channels(self):
for video_processing_class in self.video_processor_list:
# Test that can process videos which have an arbitrary number of channels
# Initialize video_processing
video_processor = video_processing_class(**self.video_processor_dict)
# create random numpy tensors
self.video_processor_tester.num_channels = 4
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="pil"
)
# Test not batched input
encoded_videos = video_processor(
video_inputs[0],
return_tensors="pt",
input_data_format="channels_last",
image_mean=0,
image_std=1,
)[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
if video_processor.do_convert_rgb:
expected_output_video_shape = list(expected_output_video_shape)
expected_output_video_shape[1] = 3
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
# Test batched
encoded_videos = video_processor(
video_inputs,
return_tensors="pt",
input_data_format="channels_last",
image_mean=0,
image_std=1,
)[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
if video_processor.do_convert_rgb:
expected_output_video_shape = list(expected_output_video_shape)
expected_output_video_shape[1] = 3
self.assertEqual(
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
)
def test_video_processor_preprocess_arguments(self):
is_tested = False
for video_processing_class in self.video_processor_list:
video_processor = video_processing_class(**self.video_processor_dict)
# validation done by _valid_processor_keys attribute
if hasattr(video_processor, "_valid_processor_keys") and hasattr(video_processor, "preprocess"):
preprocess_parameter_names = inspect.getfullargspec(video_processor.preprocess).args
preprocess_parameter_names.remove("self")
preprocess_parameter_names.sort()
valid_processor_keys = video_processor._valid_processor_keys
valid_processor_keys.sort()
self.assertEqual(preprocess_parameter_names, valid_processor_keys)
is_tested = True
# validation done by @filter_out_non_signature_kwargs decorator
if hasattr(video_processor.preprocess, "_filter_out_non_signature_kwargs"):
if hasattr(self.video_processor_tester, "prepare_video_inputs"):
inputs = self.video_processor_tester.prepare_video_inputs()
elif hasattr(self.video_processor_tester, "prepare_video_inputs"):
inputs = self.video_processor_tester.prepare_video_inputs()
else:
self.skipTest(reason="No valid input preparation method found")
with warnings.catch_warnings(record=True) as raised_warnings:
warnings.simplefilter("always")
video_processor(inputs, extra_argument=True)
messages = " ".join([str(w.message) for w in raised_warnings])
self.assertGreaterEqual(len(raised_warnings), 1)
self.assertIn("extra_argument", messages)
is_tested = True
if not is_tested:
self.skipTest(reason="No validation found for `preprocess` method")