mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 04:40:06 +06:00

* enable glm4 integration cases on XPU, set xpu expectation for blip2 Signed-off-by: Matrix YAO <matrix.yao@intel.com> * more Signed-off-by: YAO Matrix <matrix.yao@intel.com> * fix style Signed-off-by: YAO Matrix <matrix.yao@intel.com> * refine wording Signed-off-by: YAO Matrix <matrix.yao@intel.com> * refine test case names Signed-off-by: YAO Matrix <matrix.yao@intel.com> * run Signed-off-by: YAO Matrix <matrix.yao@intel.com> * add gemma2 and chameleon Signed-off-by: YAO Matrix <matrix.yao@intel.com> * fix review comments Signed-off-by: YAO Matrix <matrix.yao@intel.com> --------- Signed-off-by: Matrix YAO <matrix.yao@intel.com> Signed-off-by: YAO Matrix <matrix.yao@intel.com>
396 lines
18 KiB
Python
396 lines
18 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import json
|
|
import os
|
|
import tempfile
|
|
import warnings
|
|
|
|
import numpy as np
|
|
from packaging import version
|
|
|
|
from transformers import AutoVideoProcessor
|
|
from transformers.testing_utils import (
|
|
check_json_file_has_correct_format,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
def prepare_video(num_frames, num_channels, width=10, height=10, return_tensors="pil"):
|
|
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
|
|
|
|
video = []
|
|
for i in range(num_frames):
|
|
video.append(np.random.randint(255, size=(width, height, num_channels), dtype=np.uint8))
|
|
|
|
if return_tensors == "pil":
|
|
# PIL expects the channel dimension as last dimension
|
|
video = [Image.fromarray(frame) for frame in video]
|
|
elif return_tensors == "torch":
|
|
# Torch images are typically in channels first format
|
|
video = torch.tensor(video).permute(0, 3, 1, 2)
|
|
elif return_tensors == "np":
|
|
# Numpy images are typically in channels last format
|
|
video = np.array(video)
|
|
|
|
return video
|
|
|
|
|
|
def prepare_video_inputs(
|
|
batch_size,
|
|
num_frames,
|
|
num_channels,
|
|
min_resolution,
|
|
max_resolution,
|
|
equal_resolution=False,
|
|
return_tensors="pil",
|
|
):
|
|
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
|
|
one specifies return_tensors="np", or a list of list of PyTorch tensors if one specifies return_tensors="torch".
|
|
|
|
One can specify whether the videos are of the same resolution or not.
|
|
"""
|
|
|
|
video_inputs = []
|
|
for i in range(batch_size):
|
|
if equal_resolution:
|
|
width = height = max_resolution
|
|
else:
|
|
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
|
|
video = prepare_video(
|
|
num_frames=num_frames,
|
|
num_channels=num_channels,
|
|
width=width,
|
|
height=height,
|
|
return_tensors=return_tensors,
|
|
)
|
|
video_inputs.append(video)
|
|
|
|
return video_inputs
|
|
|
|
|
|
class VideoProcessingTestMixin:
|
|
test_cast_dtype = None
|
|
fast_video_processing_class = None
|
|
video_processor_list = None
|
|
input_name = "pixel_values_videos"
|
|
|
|
def setUp(self):
|
|
video_processor_list = []
|
|
|
|
if self.fast_video_processing_class:
|
|
video_processor_list.append(self.fast_video_processing_class)
|
|
|
|
self.video_processor_list = video_processor_list
|
|
|
|
def test_video_processor_to_json_string(self):
|
|
for video_processing_class in self.video_processor_list:
|
|
video_processor = video_processing_class(**self.video_processor_dict)
|
|
obj = json.loads(video_processor.to_json_string())
|
|
for key, value in self.video_processor_dict.items():
|
|
self.assertEqual(obj[key], value)
|
|
|
|
def test_video_processor_to_json_file(self):
|
|
for video_processing_class in self.video_processor_list:
|
|
video_processor_first = video_processing_class(**self.video_processor_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
json_file_path = os.path.join(tmpdirname, "video_processor.json")
|
|
video_processor_first.to_json_file(json_file_path)
|
|
video_processor_second = video_processing_class.from_json_file(json_file_path)
|
|
|
|
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())
|
|
|
|
def test_video_processor_from_dict_with_kwargs(self):
|
|
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict)
|
|
self.assertEqual(video_processor.size, {"shortest_edge": 20})
|
|
self.assertEqual(video_processor.crop_size, {"height": 18, "width": 18})
|
|
|
|
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42, crop_size=84)
|
|
self.assertEqual(video_processor.size, {"shortest_edge": 42})
|
|
self.assertEqual(video_processor.crop_size, {"height": 84, "width": 84})
|
|
|
|
def test_video_processor_from_and_save_pretrained(self):
|
|
for video_processing_class in self.video_processor_list:
|
|
video_processor_first = video_processing_class(**self.video_processor_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
saved_file = video_processor_first.save_pretrained(tmpdirname)[0]
|
|
check_json_file_has_correct_format(saved_file)
|
|
video_processor_second = video_processing_class.from_pretrained(tmpdirname)
|
|
|
|
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())
|
|
|
|
def test_video_processor_save_load_with_autovideoprocessor(self):
|
|
for video_processing_class in self.video_processor_list:
|
|
video_processor_first = video_processing_class(**self.video_processor_dict)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
saved_file = video_processor_first.save_pretrained(tmpdirname)[0]
|
|
check_json_file_has_correct_format(saved_file)
|
|
|
|
use_fast = video_processing_class.__name__.endswith("Fast")
|
|
video_processor_second = AutoVideoProcessor.from_pretrained(tmpdirname, use_fast=use_fast)
|
|
|
|
self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict())
|
|
|
|
def test_init_without_params(self):
|
|
for video_processing_class in self.video_processor_list:
|
|
video_processor = video_processing_class()
|
|
self.assertIsNotNone(video_processor)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
@require_vision
|
|
def test_can_compile_fast_video_processor(self):
|
|
if self.fast_video_processing_class is None:
|
|
self.skipTest("Skipping compilation test as fast video processor is not defined")
|
|
if version.parse(torch.__version__) < version.parse("2.3"):
|
|
self.skipTest(reason="This test requires torch >= 2.3 to run.")
|
|
|
|
torch.compiler.reset()
|
|
video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False, return_tensors="torch")
|
|
video_processor = self.fast_video_processing_class(**self.video_processor_dict)
|
|
output_eager = video_processor(video_inputs, device=torch_device, return_tensors="pt")
|
|
|
|
video_processor = torch.compile(video_processor, mode="reduce-overhead")
|
|
output_compiled = video_processor(video_inputs, device=torch_device, return_tensors="pt")
|
|
|
|
torch.testing.assert_close(
|
|
output_eager[self.input_name], output_compiled[self.input_name], rtol=1e-4, atol=1e-4
|
|
)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_cast_dtype_device(self):
|
|
for video_processing_class in self.video_processor_list:
|
|
if self.test_cast_dtype is not None:
|
|
# Initialize video_processor
|
|
video_processor = video_processing_class(**self.video_processor_dict)
|
|
|
|
# create random PyTorch tensors
|
|
video_inputs = self.video_processor_tester.prepare_video_inputs(
|
|
equal_resolution=False, return_tensors="torch"
|
|
)
|
|
|
|
encoding = video_processor(video_inputs, return_tensors="pt")
|
|
|
|
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
|
|
self.assertEqual(encoding[self.input_name].dtype, torch.float32)
|
|
|
|
encoding = video_processor(video_inputs, return_tensors="pt").to(torch.float16)
|
|
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
|
|
self.assertEqual(encoding[self.input_name].dtype, torch.float16)
|
|
|
|
encoding = video_processor(video_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
|
|
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
|
|
self.assertEqual(encoding[self.input_name].dtype, torch.bfloat16)
|
|
|
|
with self.assertRaises(TypeError):
|
|
_ = video_processor(video_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
|
|
|
|
# Try with text + video feature
|
|
encoding = video_processor(video_inputs, return_tensors="pt")
|
|
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
|
|
encoding = encoding.to(torch.float16)
|
|
|
|
self.assertEqual(encoding[self.input_name].device, torch.device("cpu"))
|
|
self.assertEqual(encoding[self.input_name].dtype, torch.float16)
|
|
self.assertEqual(encoding.input_ids.dtype, torch.long)
|
|
|
|
def test_call_pil(self):
|
|
for video_processing_class in self.video_processor_list:
|
|
# Initialize video_processing
|
|
video_processing = video_processing_class(**self.video_processor_dict)
|
|
video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False)
|
|
|
|
# Each video is a list of PIL Images
|
|
for video in video_inputs:
|
|
self.assertIsInstance(video[0], Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
|
|
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
|
|
|
# Test batched
|
|
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
|
|
)
|
|
|
|
def test_call_numpy(self):
|
|
for video_processing_class in self.video_processor_list:
|
|
# Initialize video_processing
|
|
video_processing = video_processing_class(**self.video_processor_dict)
|
|
# create random numpy tensors
|
|
video_inputs = self.video_processor_tester.prepare_video_inputs(
|
|
equal_resolution=False, return_tensors="np"
|
|
)
|
|
for video in video_inputs:
|
|
self.assertIsInstance(video, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
|
|
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
|
|
|
# Test batched
|
|
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
|
|
)
|
|
|
|
def test_call_pytorch(self):
|
|
for video_processing_class in self.video_processor_list:
|
|
# Initialize video_processing
|
|
video_processing = video_processing_class(**self.video_processor_dict)
|
|
# create random PyTorch tensors
|
|
video_inputs = self.video_processor_tester.prepare_video_inputs(
|
|
equal_resolution=False, return_tensors="torch"
|
|
)
|
|
|
|
for video in video_inputs:
|
|
self.assertIsInstance(video, torch.Tensor)
|
|
|
|
# Test not batched input
|
|
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
|
|
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
|
|
|
# Test batched
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
|
|
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
|
|
self.assertEqual(
|
|
tuple(encoded_videos.shape),
|
|
(self.video_processor_tester.batch_size, *expected_output_video_shape),
|
|
)
|
|
|
|
def test_nested_input(self):
|
|
"""Tests that the processor can work with nested list where each video is a list of arrays"""
|
|
for video_processing_class in self.video_processor_list:
|
|
video_processing = video_processing_class(**self.video_processor_dict)
|
|
video_inputs = self.video_processor_tester.prepare_video_inputs(
|
|
equal_resolution=False, return_tensors="np"
|
|
)
|
|
|
|
# Test not batched input
|
|
video_inputs = [list(video) for video in video_inputs]
|
|
encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
|
|
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
|
|
|
# Test batched
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
|
|
encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name]
|
|
self.assertEqual(
|
|
tuple(encoded_videos.shape),
|
|
(self.video_processor_tester.batch_size, *expected_output_video_shape),
|
|
)
|
|
|
|
def test_call_numpy_4_channels(self):
|
|
for video_processing_class in self.video_processor_list:
|
|
# Test that can process videos which have an arbitrary number of channels
|
|
# Initialize video_processing
|
|
video_processor = video_processing_class(**self.video_processor_dict)
|
|
|
|
# create random numpy tensors
|
|
self.video_processor_tester.num_channels = 4
|
|
video_inputs = self.video_processor_tester.prepare_video_inputs(
|
|
equal_resolution=False, return_tensors="pil"
|
|
)
|
|
|
|
# Test not batched input
|
|
encoded_videos = video_processor(
|
|
video_inputs[0],
|
|
return_tensors="pt",
|
|
input_data_format="channels_last",
|
|
image_mean=0,
|
|
image_std=1,
|
|
)[self.input_name]
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
|
|
if video_processor.do_convert_rgb:
|
|
expected_output_video_shape = list(expected_output_video_shape)
|
|
expected_output_video_shape[1] = 3
|
|
self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape))
|
|
|
|
# Test batched
|
|
encoded_videos = video_processor(
|
|
video_inputs,
|
|
return_tensors="pt",
|
|
input_data_format="channels_last",
|
|
image_mean=0,
|
|
image_std=1,
|
|
)[self.input_name]
|
|
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
|
|
if video_processor.do_convert_rgb:
|
|
expected_output_video_shape = list(expected_output_video_shape)
|
|
expected_output_video_shape[1] = 3
|
|
self.assertEqual(
|
|
tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape)
|
|
)
|
|
|
|
def test_video_processor_preprocess_arguments(self):
|
|
is_tested = False
|
|
|
|
for video_processing_class in self.video_processor_list:
|
|
video_processor = video_processing_class(**self.video_processor_dict)
|
|
|
|
# validation done by _valid_processor_keys attribute
|
|
if hasattr(video_processor, "_valid_processor_keys") and hasattr(video_processor, "preprocess"):
|
|
preprocess_parameter_names = inspect.getfullargspec(video_processor.preprocess).args
|
|
preprocess_parameter_names.remove("self")
|
|
preprocess_parameter_names.sort()
|
|
valid_processor_keys = video_processor._valid_processor_keys
|
|
valid_processor_keys.sort()
|
|
self.assertEqual(preprocess_parameter_names, valid_processor_keys)
|
|
is_tested = True
|
|
|
|
# validation done by @filter_out_non_signature_kwargs decorator
|
|
if hasattr(video_processor.preprocess, "_filter_out_non_signature_kwargs"):
|
|
if hasattr(self.video_processor_tester, "prepare_video_inputs"):
|
|
inputs = self.video_processor_tester.prepare_video_inputs()
|
|
elif hasattr(self.video_processor_tester, "prepare_video_inputs"):
|
|
inputs = self.video_processor_tester.prepare_video_inputs()
|
|
else:
|
|
self.skipTest(reason="No valid input preparation method found")
|
|
|
|
with warnings.catch_warnings(record=True) as raised_warnings:
|
|
warnings.simplefilter("always")
|
|
video_processor(inputs, extra_argument=True)
|
|
|
|
messages = " ".join([str(w.message) for w in raised_warnings])
|
|
self.assertGreaterEqual(len(raised_warnings), 1)
|
|
self.assertIn("extra_argument", messages)
|
|
is_tested = True
|
|
|
|
if not is_tested:
|
|
self.skipTest(reason="No validation found for `preprocess` method")
|