# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import json import os import tempfile import warnings import numpy as np from packaging import version from transformers import AutoVideoProcessor from transformers.testing_utils import ( check_json_file_has_correct_format, require_torch, require_torch_accelerator, require_vision, slow, torch_device, ) from transformers.utils import is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image def prepare_video(num_frames, num_channels, width=10, height=10, return_tensors="pil"): """This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors.""" video = [] for i in range(num_frames): video.append(np.random.randint(255, size=(width, height, num_channels), dtype=np.uint8)) if return_tensors == "pil": # PIL expects the channel dimension as last dimension video = [Image.fromarray(frame) for frame in video] elif return_tensors == "torch": # Torch images are typically in channels first format video = torch.tensor(video).permute(0, 3, 1, 2) elif return_tensors == "np": # Numpy images are typically in channels last format video = np.array(video) return video def prepare_video_inputs( batch_size, num_frames, num_channels, min_resolution, max_resolution, equal_resolution=False, return_tensors="pil", ): """This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if one specifies return_tensors="np", or a list of list of PyTorch tensors if one specifies return_tensors="torch". One can specify whether the videos are of the same resolution or not. """ video_inputs = [] for i in range(batch_size): if equal_resolution: width = height = max_resolution else: width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2) video = prepare_video( num_frames=num_frames, num_channels=num_channels, width=width, height=height, return_tensors=return_tensors, ) video_inputs.append(video) return video_inputs class VideoProcessingTestMixin: test_cast_dtype = None fast_video_processing_class = None video_processor_list = None input_name = "pixel_values_videos" def setUp(self): video_processor_list = [] if self.fast_video_processing_class: video_processor_list.append(self.fast_video_processing_class) self.video_processor_list = video_processor_list def test_video_processor_to_json_string(self): for video_processing_class in self.video_processor_list: video_processor = video_processing_class(**self.video_processor_dict) obj = json.loads(video_processor.to_json_string()) for key, value in self.video_processor_dict.items(): self.assertEqual(obj[key], value) def test_video_processor_to_json_file(self): for video_processing_class in self.video_processor_list: video_processor_first = video_processing_class(**self.video_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "video_processor.json") video_processor_first.to_json_file(json_file_path) video_processor_second = video_processing_class.from_json_file(json_file_path) self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict()) def test_video_processor_from_dict_with_kwargs(self): video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict) self.assertEqual(video_processor.size, {"shortest_edge": 20}) self.assertEqual(video_processor.crop_size, {"height": 18, "width": 18}) video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42, crop_size=84) self.assertEqual(video_processor.size, {"shortest_edge": 42}) self.assertEqual(video_processor.crop_size, {"height": 84, "width": 84}) def test_video_processor_from_and_save_pretrained(self): for video_processing_class in self.video_processor_list: video_processor_first = video_processing_class(**self.video_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = video_processor_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) video_processor_second = video_processing_class.from_pretrained(tmpdirname) self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict()) def test_video_processor_save_load_with_autovideoprocessor(self): for video_processing_class in self.video_processor_list: video_processor_first = video_processing_class(**self.video_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: saved_file = video_processor_first.save_pretrained(tmpdirname)[0] check_json_file_has_correct_format(saved_file) use_fast = video_processing_class.__name__.endswith("Fast") video_processor_second = AutoVideoProcessor.from_pretrained(tmpdirname, use_fast=use_fast) self.assertEqual(video_processor_second.to_dict(), video_processor_first.to_dict()) def test_init_without_params(self): for video_processing_class in self.video_processor_list: video_processor = video_processing_class() self.assertIsNotNone(video_processor) @slow @require_torch_accelerator @require_vision def test_can_compile_fast_video_processor(self): if self.fast_video_processing_class is None: self.skipTest("Skipping compilation test as fast video processor is not defined") if version.parse(torch.__version__) < version.parse("2.3"): self.skipTest(reason="This test requires torch >= 2.3 to run.") torch.compiler.reset() video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False, return_tensors="torch") video_processor = self.fast_video_processing_class(**self.video_processor_dict) output_eager = video_processor(video_inputs, device=torch_device, return_tensors="pt") video_processor = torch.compile(video_processor, mode="reduce-overhead") output_compiled = video_processor(video_inputs, device=torch_device, return_tensors="pt") torch.testing.assert_close( output_eager[self.input_name], output_compiled[self.input_name], rtol=1e-4, atol=1e-4 ) @require_torch @require_vision def test_cast_dtype_device(self): for video_processing_class in self.video_processor_list: if self.test_cast_dtype is not None: # Initialize video_processor video_processor = video_processing_class(**self.video_processor_dict) # create random PyTorch tensors video_inputs = self.video_processor_tester.prepare_video_inputs( equal_resolution=False, return_tensors="torch" ) encoding = video_processor(video_inputs, return_tensors="pt") self.assertEqual(encoding[self.input_name].device, torch.device("cpu")) self.assertEqual(encoding[self.input_name].dtype, torch.float32) encoding = video_processor(video_inputs, return_tensors="pt").to(torch.float16) self.assertEqual(encoding[self.input_name].device, torch.device("cpu")) self.assertEqual(encoding[self.input_name].dtype, torch.float16) encoding = video_processor(video_inputs, return_tensors="pt").to("cpu", torch.bfloat16) self.assertEqual(encoding[self.input_name].device, torch.device("cpu")) self.assertEqual(encoding[self.input_name].dtype, torch.bfloat16) with self.assertRaises(TypeError): _ = video_processor(video_inputs, return_tensors="pt").to(torch.bfloat16, "cpu") # Try with text + video feature encoding = video_processor(video_inputs, return_tensors="pt") encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])}) encoding = encoding.to(torch.float16) self.assertEqual(encoding[self.input_name].device, torch.device("cpu")) self.assertEqual(encoding[self.input_name].dtype, torch.float16) self.assertEqual(encoding.input_ids.dtype, torch.long) def test_call_pil(self): for video_processing_class in self.video_processor_list: # Initialize video_processing video_processing = video_processing_class(**self.video_processor_dict) video_inputs = self.video_processor_tester.prepare_video_inputs(equal_resolution=False) # Each video is a list of PIL Images for video in video_inputs: self.assertIsInstance(video[0], Image.Image) # Test not batched input encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name] expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name] expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs) self.assertEqual( tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape) ) def test_call_numpy(self): for video_processing_class in self.video_processor_list: # Initialize video_processing video_processing = video_processing_class(**self.video_processor_dict) # create random numpy tensors video_inputs = self.video_processor_tester.prepare_video_inputs( equal_resolution=False, return_tensors="np" ) for video in video_inputs: self.assertIsInstance(video, np.ndarray) # Test not batched input encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name] expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name] expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs) self.assertEqual( tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape) ) def test_call_pytorch(self): for video_processing_class in self.video_processor_list: # Initialize video_processing video_processing = video_processing_class(**self.video_processor_dict) # create random PyTorch tensors video_inputs = self.video_processor_tester.prepare_video_inputs( equal_resolution=False, return_tensors="torch" ) for video in video_inputs: self.assertIsInstance(video, torch.Tensor) # Test not batched input encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name] expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs) encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name] self.assertEqual( tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape), ) def test_nested_input(self): """Tests that the processor can work with nested list where each video is a list of arrays""" for video_processing_class in self.video_processor_list: video_processing = video_processing_class(**self.video_processor_dict) video_inputs = self.video_processor_tester.prepare_video_inputs( equal_resolution=False, return_tensors="np" ) # Test not batched input video_inputs = [list(video) for video in video_inputs] encoded_videos = video_processing(video_inputs[0], return_tensors="pt")[self.input_name] expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs) encoded_videos = video_processing(video_inputs, return_tensors="pt")[self.input_name] self.assertEqual( tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape), ) def test_call_numpy_4_channels(self): for video_processing_class in self.video_processor_list: # Test that can process videos which have an arbitrary number of channels # Initialize video_processing video_processor = video_processing_class(**self.video_processor_dict) # create random numpy tensors self.video_processor_tester.num_channels = 4 video_inputs = self.video_processor_tester.prepare_video_inputs( equal_resolution=False, return_tensors="pil" ) # Test not batched input encoded_videos = video_processor( video_inputs[0], return_tensors="pt", input_data_format="channels_last", image_mean=0, image_std=1, )[self.input_name] expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]]) if video_processor.do_convert_rgb: expected_output_video_shape = list(expected_output_video_shape) expected_output_video_shape[1] = 3 self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched encoded_videos = video_processor( video_inputs, return_tensors="pt", input_data_format="channels_last", image_mean=0, image_std=1, )[self.input_name] expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs) if video_processor.do_convert_rgb: expected_output_video_shape = list(expected_output_video_shape) expected_output_video_shape[1] = 3 self.assertEqual( tuple(encoded_videos.shape), (self.video_processor_tester.batch_size, *expected_output_video_shape) ) def test_video_processor_preprocess_arguments(self): is_tested = False for video_processing_class in self.video_processor_list: video_processor = video_processing_class(**self.video_processor_dict) # validation done by _valid_processor_keys attribute if hasattr(video_processor, "_valid_processor_keys") and hasattr(video_processor, "preprocess"): preprocess_parameter_names = inspect.getfullargspec(video_processor.preprocess).args preprocess_parameter_names.remove("self") preprocess_parameter_names.sort() valid_processor_keys = video_processor._valid_processor_keys valid_processor_keys.sort() self.assertEqual(preprocess_parameter_names, valid_processor_keys) is_tested = True # validation done by @filter_out_non_signature_kwargs decorator if hasattr(video_processor.preprocess, "_filter_out_non_signature_kwargs"): if hasattr(self.video_processor_tester, "prepare_video_inputs"): inputs = self.video_processor_tester.prepare_video_inputs() elif hasattr(self.video_processor_tester, "prepare_video_inputs"): inputs = self.video_processor_tester.prepare_video_inputs() else: self.skipTest(reason="No valid input preparation method found") with warnings.catch_warnings(record=True) as raised_warnings: warnings.simplefilter("always") video_processor(inputs, extra_argument=True) messages = " ".join([str(w.message) for w in raised_warnings]) self.assertGreaterEqual(len(raised_warnings), 1) self.assertIn("extra_argument", messages) is_tested = True if not is_tested: self.skipTest(reason="No validation found for `preprocess` method")