transformers/docs/source/en/model_doc/stt.md
eustlb 6bdd4ec952
Add kyutai stt (#38909)
* first draft

* cleaner version

* udpate tests + modeling

* add tests

* init

* udpate test_modeling_common

* fix tests

* csm Processor draft

* convertion update

* mimi cache padding convolutions draft

* mimi streaming udpates

* update mimi padding cache test

* udpate cache padding mimi test

* make style mimi

* updates generate moshi asr

* moshi asr integration tests (single + batched)

* update tests

* update conversion script

* good default sliding window value

* udpdate generate

* update test checkpoint

* nit

* fix mimi

* fix codec prefix

* revert

* revert

* update config

* update config

* unnecessary mimi input restriction

* remove delay in tokens

* remove _prepare_4d_causal_attention_mask_with_cache_position and _update_causal_mask

* test update

* modular update

* make style

* nit

* rename

* create codec model generation config at init

* remove delay

* max_new_tokens/length warning

* correct conv1 padding cache import for modular

* nit

* fix on encoder_past_key_values

* convert modular

* move frame_size to config

* move frame_size to config

* update test name

* handle first token is bos

* better handling of max_new_tokens

* fix

* fix batch size in test input prep

* update docstring

* convert modular

* make style

* make style

* add feature extractor

* correct modular convention name for feature_extraction file

* update convertion script

* doc processor

* update doc

* udpate init

* update model type

* fixes

* update tests

* fix

* make

* add doc

* nit

* fix

* doc

* auto mappings

* doc

* nit

* convert modular

* doc

* nit

* extend _keep_in_fp32_modules to enforce fp32

* renaming to stt

* doc update + test update

* doc fixes

* doc fix

* doc fix

* fix musicgen tests

* fix musicgen tests

* make style

* fix musicgen tests

* correct frame_rate config param for mimi

* update mimi test

* revert update mimi test

* enforce cpu test

* move cache init in cache class

* convert modular

* docstring update

* update model id

* feature_extractor -> feature_extraction (SEW)

* convert modular

* update model id
2025-06-24 18:01:15 +02:00

4.1 KiB
Raw Blame History

Kyutai Speech-To-Text

Overview

Kyutai STT is a speech-to-text model architecture based on the Mimi codec, which encodes audio into discrete tokens in a streaming fashion, and a Moshi-like autoregressive decoder. Kyutais lab has released two model checkpoints:

  • kyutai/stt-1b-en_fr: a 1B-parameter model capable of transcribing both English and French
  • kyutai/stt-2.6b-en: a 2.6B-parameter model focused solely on English, optimized for maximum transcription accuracy

Usage Tips

Inference

import torch
from datasets import load_dataset, Audio
from transformers import KyutaiSpeechToTextProcessor, KyutaiSpeechToTextForConditionalGeneration

# 1. load the model and the processor
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "kyutai/stt-2.6b-en"

processor = KyutaiSpeechToTextProcessor.from_pretrained(model_id)
model = KyutaiSpeechToTextForConditionalGeneration.from_pretrained(model_id, device_map=torch_device)

# 2. load audio samples
ds = load_dataset(
    "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
)
ds = ds.cast_column("audio", Audio(sampling_rate=24000))

# 3. prepare the model inputs
inputs = processor(
    ds[0]["audio"]["array"],
)
inputs.to(torch_device)

# 4. infer the model
output_tokens = model.generate(**inputs)

# 5. decode the generated tokens
print(processor.batch_decode(output_tokens, skip_special_tokens=True))

Batched Inference

import torch
from datasets import load_dataset, Audio
from transformers import KyutaiSpeechToTextProcessor, KyutaiSpeechToTextForConditionalGeneration

# 1. load the model and the processor
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "kyutai/stt-2.6b-en"

processor = KyutaiSpeechToTextProcessor.from_pretrained(model_id)
model = KyutaiSpeechToTextForConditionalGeneration.from_pretrained(model_id, device_map=torch_device)

# 2. load audio samples
ds = load_dataset(
    "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
)
ds = ds.cast_column("audio", Audio(sampling_rate=24000))

# 3. prepare the model inputs
audio_arrays = [ds[i]["audio"]["array"] for i in range(4)]
inputs = processor(audio_arrays, return_tensors="pt", padding=True)
inputs = inputs.to(torch_device)

# 4. infer the model
output_tokens = model.generate(**inputs)

# 5. decode the generated tokens
decoded_outputs = processor.batch_decode(output_tokens, skip_special_tokens=True)
for output in decoded_outputs:
    print(output)

This model was contributed by Eustache Le Bihan. The original code can be found here.

KyutaiSpeechToTextConfig

autodoc KyutaiSpeechToTextConfig

KyutaiSpeechToTextProcessor

autodoc KyutaiSpeechToTextProcessor - call

KyutaiSpeechToTextFeatureExtractor

autodoc KyutaiSpeechToTextFeatureExtractor

KyutaiSpeechToTextForConditionalGeneration

autodoc KyutaiSpeechToTextForConditionalGeneration - forward - generate

KyutaiSpeechToTextModel

autodoc KyutaiSpeechToTextModel