
* toctree * not-doctested.txt * collapse sections * feedback * update * rewrite get started sections * fixes * fix * loading models * fix * customize models * share * fix link * contribute part 1 * contribute pt 2 * fix toctree * tokenization pt 1 * Add new model (#32615) * v1 - working version * fix * fix * fix * fix * rename to correct name * fix title * fixup * rename files * fix * add copied from on tests * rename to `FalconMamba` everywhere and fix bugs * fix quantization + accelerate * fix copies * add `torch.compile` support * fix tests * fix tests and add slow tests * copies on config * merge the latest changes * fix tests * add few lines about instruct * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix tests --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * "to be not" -> "not to be" (#32636) * "to be not" -> "not to be" * Update sam.md * Update trainer.py * Update modeling_utils.py * Update test_modeling_utils.py * Update test_modeling_utils.py * fix hfoption tag * tokenization pt. 2 * image processor * fix toctree * backbones * feature extractor * fix file name * processor * update not-doctested * update * make style * fix toctree * revision * make fixup * fix toctree * fix * make style * fix hfoption tag * pipeline * pipeline gradio * pipeline web server * add pipeline * fix toctree * not-doctested * prompting * llm optims * fix toctree * fixes * cache * text generation * fix * chat pipeline * chat stuff * xla * torch.compile * cpu inference * toctree * gpu inference * agents and tools * gguf/tiktoken * finetune * toctree * trainer * trainer pt 2 * optims * optimizers * accelerate * parallelism * fsdp * update * distributed cpu * hardware training * gpu training * gpu training 2 * peft * distrib debug * deepspeed 1 * deepspeed 2 * chat toctree * quant pt 1 * quant pt 2 * fix toctree * fix * fix * quant pt 3 * quant pt 4 * serialization * torchscript * scripts * tpu * review * model addition timeline * modular * more reviews * reviews * fix toctree * reviews reviews * continue reviews * more reviews * modular transformers * more review * zamba2 * fix * all frameworks * pytorch * supported model frameworks * flashattention * rm check_table * not-doctested.txt * rm check_support_list.py * feedback * updates/feedback * review * feedback * fix * update * feedback * updates * update --------- Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
4.9 KiB
StableLM
Overview
StableLM 3B 4E1T
was proposed in StableLM 3B 4E1T
: Technical Report by Stability AI and is the first model in a series of multi-epoch pre-trained language models.
Model Details
StableLM 3B 4E1T
is a decoder-only base language model pre-trained on 1 trillion tokens of diverse English and code datasets for four epochs.
The model architecture is transformer-based with partial Rotary Position Embeddings, SwiGLU activation, LayerNorm, etc.
We also provide StableLM Zephyr 3B
, an instruction fine-tuned version of the model that can be used for chat-based applications.
Usage Tips
- The architecture is similar to LLaMA but with RoPE applied to 25% of head embedding dimensions, LayerNorm instead of RMSNorm, and optional QKV bias terms.
StableLM 3B 4E1T
-based models uses the same tokenizer as [GPTNeoXTokenizerFast
].
StableLM 3B 4E1T
and StableLM Zephyr 3B
can be found on the Huggingface Hub
The following code snippet demonstrates how to use StableLM 3B 4E1T
for inference:
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
>>> device = "cuda" # the device to load the model onto
>>> set_seed(0)
>>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
>>> model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t")
>>> model.to(device) # doctest: +IGNORE_RESULT
>>> model_inputs = tokenizer("The weather is always wonderful in", return_tensors="pt").to(model.device)
>>> generated_ids = model.generate(**model_inputs, max_length=32, do_sample=True)
>>> responses = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
>>> responses
['The weather is always wonderful in Costa Rica, which makes it a prime destination for retirees. That’s where the Pensionado program comes in, offering']
Combining StableLM and Flash Attention 2
First, make sure to install the latest version of Flash Attention v2.
pip install -U flash-attn --no-build-isolation
Also make sure that your hardware is compatible with Flash-Attention 2. Read more about it in the official documentation of the flash-attn
repository. Note: you must load your model in half-precision (e.g. torch.bfloat16
).
Now, to run the model with Flash Attention 2, refer to the snippet below:
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
>>> device = "cuda" # the device to load the model onto
>>> set_seed(0)
>>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
>>> model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2") # doctest: +SKIP
>>> model.to(device) # doctest: +SKIP
>>> model_inputs = tokenizer("The weather is always wonderful in", return_tensors="pt").to(model.device)
>>> generated_ids = model.generate(**model_inputs, max_length=32, do_sample=True) # doctest: +SKIP
>>> responses = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) # doctest: +SKIP
>>> responses # doctest: +SKIP
['The weather is always wonderful in Costa Rica, which makes it a prime destination for retirees. That’s where the Pensionado program comes in, offering']
StableLmConfig
autodoc StableLmConfig
StableLmModel
autodoc StableLmModel - forward
StableLmForCausalLM
autodoc StableLmForCausalLM - forward
StableLmForSequenceClassification
autodoc StableLmForSequenceClassification - forward
StableLmForTokenClassification
autodoc StableLmForTokenClassification - forward