mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

Some checks are pending
Self-hosted runner (benchmark) / Benchmark (aws-g5-4xlarge-cache) (push) Waiting to run
Build documentation / build (push) Waiting to run
Slow tests on important models (on Push - A10) / Get all modified files (push) Waiting to run
Slow tests on important models (on Push - A10) / Slow & FA2 tests (push) Blocked by required conditions
Secret Leaks / trufflehog (push) Waiting to run
Update Transformers metadata / build_and_package (push) Waiting to run
* updates * feedback * badges * fix? * fix? * fix? * fix?
183 lines
9.2 KiB
Markdown
183 lines
9.2 KiB
Markdown
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
|
">
|
|
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
|
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
|
</div>
|
|
</div>
|
|
|
|
# Llama
|
|
|
|
[Llama](https://huggingface.co/papers/2302.13971) is a family of large language models ranging from 7B to 65B parameters. These models are focused on efficient inference (important for serving language models) by training a smaller model on more tokens rather than training a larger model on fewer tokens. The Llama model is based on the GPT architecture, but it uses pre-normalization to improve training stability, replaces ReLU with SwiGLU to improve performance, and replaces absolute positional embeddings with rotary positional embeddings (RoPE) to better handle longer sequence lengths.
|
|
|
|
You can find all the original Llama checkpoints under the [Huggy Llama](https://huggingface.co/huggyllama) organization.
|
|
|
|
> [!TIP]
|
|
> Click on the Llama models in the right sidebar for more examples of how to apply Llama to different language tasks.
|
|
|
|
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
pipeline = pipeline(
|
|
task="text-generation",
|
|
model="huggyllama/llama-7b",
|
|
torch_dtype=torch.float16,
|
|
device=0
|
|
)
|
|
pipeline("Plants create energy through a process known as")
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```py
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
"huggyllama/llama-7b",
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"huggyllama/llama-7b",
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
attn_implementation="sdpa"
|
|
)
|
|
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
|
|
|
output = model.generate(**input_ids, cache_implementation="static")
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="transformers CLI">
|
|
|
|
```bash
|
|
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model huggyllama/llama-7b --device 0
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
|
|
|
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
|
|
|
|
```py
|
|
# pip install torchao
|
|
import torch
|
|
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"huggyllama/llama-30b",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
quantization_config=quantization_config
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-30b")
|
|
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
|
|
|
output = model.generate(**input_ids, cache_implementation="static")
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
```
|
|
|
|
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
|
|
|
```py
|
|
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
|
|
|
visualizer = AttentionMaskVisualizer("huggyllama/llama-7b")
|
|
visualizer("Plants create energy through a process known as")
|
|
```
|
|
|
|
<div class="flex justify-center">
|
|
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llama-attn-mask.png"/>
|
|
</div>
|
|
|
|
## Notes
|
|
|
|
- The tokenizer is a byte-pair encoding model based on [SentencePiece](https://github.com/google/sentencepiece). During decoding, if the first token is the start of the word (for example, "Banana"), the tokenizer doesn't prepend the prefix space to the string.
|
|
|
|
## LlamaConfig
|
|
|
|
[[autodoc]] LlamaConfig
|
|
|
|
## LlamaTokenizer
|
|
|
|
[[autodoc]] LlamaTokenizer
|
|
- build_inputs_with_special_tokens
|
|
- get_special_tokens_mask
|
|
- create_token_type_ids_from_sequences
|
|
- save_vocabulary
|
|
|
|
## LlamaTokenizerFast
|
|
|
|
[[autodoc]] LlamaTokenizerFast
|
|
- build_inputs_with_special_tokens
|
|
- get_special_tokens_mask
|
|
- create_token_type_ids_from_sequences
|
|
- update_post_processor
|
|
- save_vocabulary
|
|
|
|
## LlamaModel
|
|
|
|
[[autodoc]] LlamaModel
|
|
- forward
|
|
|
|
## LlamaForCausalLM
|
|
|
|
[[autodoc]] LlamaForCausalLM
|
|
- forward
|
|
|
|
## LlamaForSequenceClassification
|
|
|
|
[[autodoc]] LlamaForSequenceClassification
|
|
- forward
|
|
|
|
## LlamaForQuestionAnswering
|
|
|
|
[[autodoc]] LlamaForQuestionAnswering
|
|
- forward
|
|
|
|
## LlamaForTokenClassification
|
|
|
|
[[autodoc]] LlamaForTokenClassification
|
|
- forward
|
|
|
|
## FlaxLlamaModel
|
|
|
|
[[autodoc]] FlaxLlamaModel
|
|
- __call__
|
|
|
|
## FlaxLlamaForCausalLM
|
|
|
|
[[autodoc]] FlaxLlamaForCausalLM
|
|
- __call__
|