
* [docs]: update deberta-v2.md model card * chore: req updates * chore: address code review feedback and update docs * chore: review feedback and updates * chore: model selection updates * chores: quantizations review updates
5.9 KiB
DeBERTa-v2
DeBERTa-v2 improves on the original DeBERTa architecture by using a SentencePiece-based tokenizer and a new vocabulary size of 128K. It also adds an additional convolutional layer within the first transformer layer to better learn local dependencies of input tokens. Finally, the position projection and content projection matrices are shared in the attention layer to reduce the number of parameters.
You can find all the original [DeBERTa-v2] checkpoints under the Microsoft organization.
Tip
This model was contributed by Pengcheng He.
Click on the DeBERTa-v2 models in the right sidebar for more examples of how to apply DeBERTa-v2 to different language tasks.
The example below demonstrates how to classify text with [Pipeline
] or the [AutoModel
] class.
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-classification",
model="microsoft/deberta-v2-xlarge-mnli",
device=0,
torch_dtype=torch.float16
)
result = pipeline("DeBERTa-v2 is great at understanding context!")
print(result)
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained(
"microsoft/deberta-v2-xlarge-mnli"
)
model = AutoModelForSequenceClassification.from_pretrained(
"microsoft/deberta-v2-xlarge-mnli",
torch_dtype=torch.float16,
device_map="auto"
)
inputs = tokenizer("DeBERTa-v2 is great at understanding context!", return_tensors="pt").to("cuda")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax().item()
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")
echo -e "DeBERTa-v2 is great at understanding context!" | transformers-cli run --task fill-mask --model microsoft/deberta-v2-xlarge-mnli --device 0
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses bitsandbytes quantization to only quantize the weights to 4-bit.
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig
model_id = "microsoft/deberta-v2-xlarge-mnli"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(
model_id,
quantization_config=quantization_config,
torch_dtype="float16"
)
inputs = tokenizer("DeBERTa-v2 is great at understanding context!", return_tensors="pt").to("cuda")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax().item()
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")
DebertaV2Config
autodoc DebertaV2Config
DebertaV2Tokenizer
autodoc DebertaV2Tokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
DebertaV2TokenizerFast
autodoc DebertaV2TokenizerFast - build_inputs_with_special_tokens - create_token_type_ids_from_sequences
DebertaV2Model
autodoc DebertaV2Model - forward
DebertaV2PreTrainedModel
autodoc DebertaV2PreTrainedModel - forward
DebertaV2ForMaskedLM
autodoc DebertaV2ForMaskedLM - forward
DebertaV2ForSequenceClassification
autodoc DebertaV2ForSequenceClassification - forward
DebertaV2ForTokenClassification
autodoc DebertaV2ForTokenClassification - forward
DebertaV2ForQuestionAnswering
autodoc DebertaV2ForQuestionAnswering - forward
DebertaV2ForMultipleChoice
autodoc DebertaV2ForMultipleChoice - forward
TFDebertaV2Model
autodoc TFDebertaV2Model - call
TFDebertaV2PreTrainedModel
autodoc TFDebertaV2PreTrainedModel - call
TFDebertaV2ForMaskedLM
autodoc TFDebertaV2ForMaskedLM - call
TFDebertaV2ForSequenceClassification
autodoc TFDebertaV2ForSequenceClassification - call
TFDebertaV2ForTokenClassification
autodoc TFDebertaV2ForTokenClassification - call
TFDebertaV2ForQuestionAnswering
autodoc TFDebertaV2ForQuestionAnswering - call
TFDebertaV2ForMultipleChoice
autodoc TFDebertaV2ForMultipleChoice - call