mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

Some checks are pending
Self-hosted runner (benchmark) / Benchmark (aws-g5-4xlarge-cache) (push) Waiting to run
Build documentation / build (push) Waiting to run
Slow tests on important models (on Push - A10) / Get all modified files (push) Waiting to run
Slow tests on important models (on Push - A10) / Slow & FA2 tests (push) Blocked by required conditions
Secret Leaks / trufflehog (push) Waiting to run
Update Transformers metadata / build_and_package (push) Waiting to run
* updates * feedback * badges * fix? * fix? * fix? * fix?
138 lines
5.2 KiB
Markdown
138 lines
5.2 KiB
Markdown
<div style="float: right;">
|
||
<div class="flex flex-wrap space-x-1">
|
||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||
<img alt="Tensor parallelism" src="https://img.shields.io/badge/Tensor%20parallelism-06b6d4?style=flat&logoColor=white">
|
||
</div>
|
||
</div>
|
||
|
||
|
||
# Cohere
|
||
|
||
Cohere Command-R is a 35B parameter multilingual large language model designed for long context tasks like retrieval-augmented generation (RAG) and calling external APIs and tools. The model is specifically trained for grounded generation and supports both single-step and multi-step tool use. It supports a context length of 128K tokens.
|
||
|
||
You can find all the original Command-R checkpoints under the [Command Models](https://huggingface.co/collections/CohereForAI/command-models-67652b401665205e17b192ad) collection.
|
||
|
||
|
||
> [!TIP]
|
||
> Click on the Cohere models in the right sidebar for more examples of how to apply Cohere to different language tasks.
|
||
|
||
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
|
||
|
||
<hfoptions id="usage">
|
||
<hfoption id="Pipeline">
|
||
|
||
```python
|
||
import torch
|
||
from transformers import pipeline
|
||
|
||
pipeline = pipeline(
|
||
task="text-generation",
|
||
model="CohereForAI/c4ai-command-r-v01",
|
||
torch_dtype=torch.float16,
|
||
device=0
|
||
)
|
||
pipeline("Plants create energy through a process known as")
|
||
```
|
||
|
||
</hfoption>
|
||
<hfoption id="AutoModel">
|
||
|
||
```python
|
||
import torch
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")
|
||
model = AutoModelForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
|
||
|
||
# format message with the Command-R chat template
|
||
messages = [{"role": "user", "content": "How do plants make energy?"}]
|
||
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
||
output = model.generate(
|
||
input_ids,
|
||
max_new_tokens=100,
|
||
do_sample=True,
|
||
temperature=0.3,
|
||
cache_implementation="static",
|
||
)
|
||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||
```
|
||
|
||
</hfoption>
|
||
<hfoption id="transformers CLI">
|
||
|
||
```bash
|
||
# pip install -U flash-attn --no-build-isolation
|
||
transformers chat CohereForAI/c4ai-command-r-v01 --torch_dtype auto --attn_implementation flash_attention_2
|
||
```
|
||
|
||
</hfoption>
|
||
</hfoptions>
|
||
|
||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||
|
||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to 4-bits.
|
||
|
||
```python
|
||
import torch
|
||
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
|
||
|
||
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
|
||
tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")
|
||
model = AutoModelForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01", torch_dtype=torch.float16, device_map="auto", quantization_config=bnb_config, attn_implementation="sdpa")
|
||
|
||
# format message with the Command-R chat template
|
||
messages = [{"role": "user", "content": "How do plants make energy?"}]
|
||
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
||
output = model.generate(
|
||
input_ids,
|
||
max_new_tokens=100,
|
||
do_sample=True,
|
||
temperature=0.3,
|
||
cache_implementation="static",
|
||
)
|
||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||
```
|
||
|
||
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
|
||
|
||
```py
|
||
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
|
||
|
||
visualizer = AttentionMaskVisualizer("CohereForAI/c4ai-command-r-v01")
|
||
visualizer("Plants create energy through a process known as")
|
||
```
|
||
|
||
<div class="flex justify-center">
|
||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/cohere-attn-mask.png"/>
|
||
</div>
|
||
|
||
|
||
## Notes
|
||
- Don’t use the torch_dtype parameter in [`~AutoModel.from_pretrained`] if you’re using FlashAttention-2 because it only supports fp16 or bf16. You should use [Automatic Mixed Precision](https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html), set fp16 or bf16 to True if using [`Trainer`], or use [torch.autocast](https://pytorch.org/docs/stable/amp.html#torch.autocast).
|
||
|
||
## CohereConfig
|
||
|
||
[[autodoc]] CohereConfig
|
||
|
||
## CohereTokenizerFast
|
||
|
||
[[autodoc]] CohereTokenizerFast
|
||
- build_inputs_with_special_tokens
|
||
- get_special_tokens_mask
|
||
- create_token_type_ids_from_sequences
|
||
- update_post_processor
|
||
- save_vocabulary
|
||
|
||
## CohereModel
|
||
|
||
[[autodoc]] CohereModel
|
||
- forward
|
||
|
||
|
||
## CohereForCausalLM
|
||
|
||
[[autodoc]] CohereForCausalLM
|
||
- forward
|