
* Update bamba model card * Update the doc for bamba * Update docs/source/en/model_doc/bamba.md Bamba paragraph Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/bamba.md Bamba collection url Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/bamba.md Update Padding-Free Training to Notes heading Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/bamba.md update examples Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/bamba.md Update additional info Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/bamba.md consistent casing Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/bamba.md simplify sentences Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Include pipeline and cli examples + fix formatting * Apply suggestions from code review Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/bamba.md update cli id * Update quantization example * Fix auto code formatter changes * Update cli command + include BambaModel * Update docs/source/en/model_doc/bamba.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
6.1 KiB
Bamba
Bamba is a 9B parameter decoder-only language model built on the Mamba-2 architecture. It is pretrained in two stages - it starts by training on 2T tokens from the Dolma v1.7 dataset and then trained on an additional 200B tokens from FineWeb and Cosmopedia.
You can find all the original Bamba checkpoints under the Bamba collection.
Tip
This model was contributed by ani300 and fabianlim.
Click on the Bamba models in the right sidebar for more examples of how to apply Bamba to different text generation tasks.
The example below demonstrates how to generate text with [Pipeline
], [AutoModel
], and from the command line.
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="ibm-ai-platform/Bamba-9B-v2",
torch_dtype=torch.bfloat16,
device=0
)
pipeline("Plants create energy through a process known as")
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
model = AutoModelForCausalLM.from_pretrained("ibm-ai-platform/Bamba-9B-v2", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```bash
echo "Plants create energy through a process known as" | transformers-cli run --task text-generation --model ibm-ai-platform/Bamba-9B-v2 --device 0
```
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses torchao to only quantize the weights to int4.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
model = AutoModelForCausalLM.from_pretrained(
"ibm-ai-platform/Bamba-9B-v2",
quantization_config=quantization_config,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**inputs)
print(tokenizer.decode(output[0], skip_special_tokens=True))
Notes
-
Bamba supports padding-free training which concatenates distinct training examples while still processing inputs as separate batches. It can significantly accelerate inference by ~2x (depending on model and data distribution) and reduce memory-usage if there are examples of varying lengths by avoiding unnecessary compute and memory overhead from padding tokens.
Padding-free training requires the
flash-attn
,mamba-ssm
, andcausal-conv1d
packages and the following arguments must be passed to the model in addition toinput_ids
andlabels
.position_ids: torch.LongTensor
: the position index of each token in each sequence.seq_idx: torch.IntTensor
: the index of each sequence in the batch.- Each of the [
FlashAttentionKwargs
]cu_seq_lens_q: torch.LongTensor
: the cumulative sequence lengths of all queries.cu_seq_lens_k: torch.LongTensor
: the cumulative sequence lengths of all keys.max_length_q: int
: the longest query length in the batch.max_length_k: int
: the longest key length in the batch.
The
attention_mask
inputs should not be provided. The [DataCollatorWithFlattening
] programmatically generates the set of additional arguments above usingreturn_seq_idx=True
andreturn_flash_attn_kwargs=True
. See the Improving Hugging Face Training Efficiency Through Packing with Flash Attention blog post for additional information.from transformers import DataCollatorWithFlattening # Example of using padding-free training data_collator = DataCollatorWithFlattening( tokenizer=tokenizer, return_seq_idx=True, return_flash_attn_kwargs=True )
BambaConfig
autodoc BambaConfig
BambaModel
autodoc BambaModel - forward
BambaForCausalLM
autodoc BambaForCausalLM - forward