mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 22:30:09 +06:00

* [InstructBLIP] qformer_tokenizer is required input * Bit safer * Add to instructblipvideo processor * Fix up * Use video inputs * Update tests/models/instructblipvideo/test_processor_instructblipvideo.py
426 lines
17 KiB
Python
426 lines
17 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_vision_available
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
BertTokenizerFast,
|
|
BlipImageProcessor,
|
|
GPT2Tokenizer,
|
|
InstructBlipProcessor,
|
|
PreTrainedTokenizerFast,
|
|
)
|
|
|
|
|
|
@require_vision
|
|
class InstructBlipProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
processor_class = InstructBlipProcessor
|
|
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
image_processor = BlipImageProcessor()
|
|
tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model")
|
|
qformer_tokenizer = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert")
|
|
|
|
processor = InstructBlipProcessor(image_processor, tokenizer, qformer_tokenizer)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
|
|
|
def get_qformer_tokenizer(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).qformer_tokenizer
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def prepare_image_inputs(self):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
"""
|
|
|
|
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
|
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
|
|
return image_inputs
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = InstructBlipProcessor(
|
|
tokenizer=self.get_tokenizer(),
|
|
image_processor=self.get_image_processor(),
|
|
qformer_tokenizer=self.get_qformer_tokenizer(),
|
|
)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = InstructBlipProcessor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
|
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.image_processor, BlipImageProcessor)
|
|
self.assertIsInstance(processor.qformer_tokenizer, BertTokenizerFast)
|
|
|
|
def test_image_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
qformer_tokenizer = self.get_qformer_tokenizer()
|
|
|
|
processor = InstructBlipProcessor(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = image_processor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
qformer_tokenizer = self.get_qformer_tokenizer()
|
|
|
|
processor = InstructBlipProcessor(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
|
|
input_str = ["lower newer"]
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
|
|
encoded_tokens = tokenizer(input_str, return_token_type_ids=False)
|
|
encoded_tokens_qformer = qformer_tokenizer(input_str, return_token_type_ids=False)
|
|
|
|
for key in encoded_tokens.keys():
|
|
self.assertListEqual(encoded_tokens[key], encoded_processor[key])
|
|
|
|
for key in encoded_tokens_qformer.keys():
|
|
self.assertListEqual(encoded_tokens_qformer[key], encoded_processor["qformer_" + key])
|
|
|
|
def test_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
qformer_tokenizer = self.get_qformer_tokenizer()
|
|
|
|
processor = InstructBlipProcessor(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(
|
|
list(inputs.keys()),
|
|
["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"],
|
|
)
|
|
|
|
# test if it raises when no input is passed
|
|
with pytest.raises(ValueError):
|
|
processor()
|
|
|
|
def test_tokenizer_decode(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
qformer_tokenizer = self.get_qformer_tokenizer()
|
|
|
|
processor = InstructBlipProcessor(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|
|
|
|
def test_model_input_names(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
qformer_tokenizer = self.get_qformer_tokenizer()
|
|
|
|
processor = InstructBlipProcessor(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(
|
|
list(inputs.keys()),
|
|
["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"],
|
|
)
|
|
|
|
# Override as InstructBlipProcessor has qformer_tokenizer
|
|
@require_vision
|
|
@require_torch
|
|
def test_tokenizer_defaults_preserved_by_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length")
|
|
qformer_tokenizer = self.get_component("qformer_tokenizer", max_length=117, padding="max_length")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input, return_tensors="pt")
|
|
self.assertEqual(len(inputs["input_ids"][0]), 117)
|
|
|
|
# Override as InstructBlipProcessor has qformer_tokenizer
|
|
@require_torch
|
|
@require_vision
|
|
def test_image_processor_defaults_preserved_by_image_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor", size=(234, 234))
|
|
tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length")
|
|
qformer_tokenizer = self.get_component("qformer_tokenizer", max_length=117, padding="max_length")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
self.assertEqual(len(inputs["pixel_values"][0][0]), 234)
|
|
|
|
# Override as InstructBlipProcessor has qformer_tokenizer
|
|
@require_vision
|
|
@require_torch
|
|
def test_kwargs_overrides_default_tokenizer_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer", padding="longest")
|
|
qformer_tokenizer = self.get_component("qformer_tokenizer", padding="longest")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(
|
|
text=input_str, images=image_input, return_tensors="pt", max_length=112, padding="max_length"
|
|
)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 112)
|
|
|
|
# Override as InstructBlipProcessor has qformer_tokenizer
|
|
@require_torch
|
|
@require_vision
|
|
def test_kwargs_overrides_default_image_processor_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor", size=(234, 234))
|
|
tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length")
|
|
qformer_tokenizer = self.get_component("qformer_tokenizer", max_length=117, padding="max_length")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input, size=[224, 224])
|
|
self.assertEqual(len(inputs["pixel_values"][0][0]), 224)
|
|
|
|
# Override as InstructBlipProcessor has qformer_tokenizer
|
|
@require_torch
|
|
@require_vision
|
|
def test_unstructured_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
qformer_tokenizer = self.get_component("qformer_tokenizer")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
inputs = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
size={"height": 214, "width": 214},
|
|
padding="max_length",
|
|
max_length=76,
|
|
)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[2], 214)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 76)
|
|
|
|
# Override as InstructBlipProcessor has qformer_tokenizer
|
|
@require_torch
|
|
@require_vision
|
|
def test_unstructured_kwargs_batched(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
qformer_tokenizer = self.get_component("qformer_tokenizer")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = ["lower newer", "upper older longer string"]
|
|
image_input = self.prepare_image_inputs() * 2
|
|
inputs = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
size={"height": 214, "width": 214},
|
|
padding="longest",
|
|
max_length=76,
|
|
)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[2], 214)
|
|
|
|
self.assertEqual(len(inputs["input_ids"][0]), 6)
|
|
|
|
# Override as InstructBlipProcessor has qformer_tokenizer
|
|
@require_torch
|
|
@require_vision
|
|
def test_doubly_passed_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
qformer_tokenizer = self.get_component("qformer_tokenizer")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = ["lower newer"]
|
|
image_input = self.prepare_image_inputs()
|
|
with self.assertRaises(ValueError):
|
|
_ = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
images_kwargs={"size": {"height": 222, "width": 222}},
|
|
size={"height": 214, "width": 214},
|
|
)
|
|
|
|
# Override as InstructBlipProcessor has qformer_tokenizer
|
|
@require_torch
|
|
@require_vision
|
|
def test_structured_kwargs_nested(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
qformer_tokenizer = self.get_component("qformer_tokenizer")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
# Define the kwargs for each modality
|
|
all_kwargs = {
|
|
"common_kwargs": {"return_tensors": "pt"},
|
|
"images_kwargs": {"size": {"height": 214, "width": 214}},
|
|
"text_kwargs": {"padding": "max_length", "max_length": 76},
|
|
}
|
|
|
|
inputs = processor(text=input_str, images=image_input, **all_kwargs)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[2], 214)
|
|
|
|
self.assertEqual(len(inputs["input_ids"][0]), 76)
|
|
|
|
# Override as InstructBlipProcessor has qformer_tokenizer
|
|
@require_torch
|
|
@require_vision
|
|
def test_structured_kwargs_nested_from_dict(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
qformer_tokenizer = self.get_component("qformer_tokenizer")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
# Define the kwargs for each modality
|
|
all_kwargs = {
|
|
"common_kwargs": {"return_tensors": "pt"},
|
|
"images_kwargs": {"size": {"height": 214, "width": 214}},
|
|
"text_kwargs": {"padding": "max_length", "max_length": 76},
|
|
}
|
|
|
|
inputs = processor(text=input_str, images=image_input, **all_kwargs)
|
|
self.assertEqual(inputs["pixel_values"].shape[2], 214)
|
|
|
|
self.assertEqual(len(inputs["input_ids"][0]), 76)
|