# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_processing_common import ProcessorTesterMixin if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPT2Tokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class InstructBlipProcessorTest(ProcessorTesterMixin, unittest.TestCase): processor_class = InstructBlipProcessor def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = BlipImageProcessor() tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model") qformer_tokenizer = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert") processor = InstructBlipProcessor(image_processor, tokenizer, qformer_tokenizer) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def get_qformer_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).qformer_tokenizer def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_additional_features(self): processor = InstructBlipProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor(), qformer_tokenizer=self.get_qformer_tokenizer(), ) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = InstructBlipProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, BlipImageProcessor) self.assertIsInstance(processor.qformer_tokenizer, BertTokenizerFast) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() qformer_tokenizer = self.get_qformer_tokenizer() processor = InstructBlipProcessor( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() qformer_tokenizer = self.get_qformer_tokenizer() processor = InstructBlipProcessor( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) input_str = ["lower newer"] encoded_processor = processor(text=input_str) encoded_tokens = tokenizer(input_str, return_token_type_ids=False) encoded_tokens_qformer = qformer_tokenizer(input_str, return_token_type_ids=False) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key], encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key], encoded_processor["qformer_" + key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() qformer_tokenizer = self.get_qformer_tokenizer() processor = InstructBlipProcessor( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual( list(inputs.keys()), ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"], ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() qformer_tokenizer = self.get_qformer_tokenizer() processor = InstructBlipProcessor( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() qformer_tokenizer = self.get_qformer_tokenizer() processor = InstructBlipProcessor( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual( list(inputs.keys()), ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"], ) # Override as InstructBlipProcessor has qformer_tokenizer @require_vision @require_torch def test_tokenizer_defaults_preserved_by_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length") qformer_tokenizer = self.get_component("qformer_tokenizer", max_length=117, padding="max_length") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, return_tensors="pt") self.assertEqual(len(inputs["input_ids"][0]), 117) # Override as InstructBlipProcessor has qformer_tokenizer @require_torch @require_vision def test_image_processor_defaults_preserved_by_image_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor", size=(234, 234)) tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length") qformer_tokenizer = self.get_component("qformer_tokenizer", max_length=117, padding="max_length") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertEqual(len(inputs["pixel_values"][0][0]), 234) # Override as InstructBlipProcessor has qformer_tokenizer @require_vision @require_torch def test_kwargs_overrides_default_tokenizer_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer", padding="longest") qformer_tokenizer = self.get_component("qformer_tokenizer", padding="longest") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", max_length=112, padding="max_length" ) self.assertEqual(len(inputs["input_ids"][0]), 112) # Override as InstructBlipProcessor has qformer_tokenizer @require_torch @require_vision def test_kwargs_overrides_default_image_processor_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor", size=(234, 234)) tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length") qformer_tokenizer = self.get_component("qformer_tokenizer", max_length=117, padding="max_length") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input, size=[224, 224]) self.assertEqual(len(inputs["pixel_values"][0][0]), 224) # Override as InstructBlipProcessor has qformer_tokenizer @require_torch @require_vision def test_unstructured_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") qformer_tokenizer = self.get_component("qformer_tokenizer") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor( text=input_str, images=image_input, return_tensors="pt", size={"height": 214, "width": 214}, padding="max_length", max_length=76, ) self.assertEqual(inputs["pixel_values"].shape[2], 214) self.assertEqual(len(inputs["input_ids"][0]), 76) # Override as InstructBlipProcessor has qformer_tokenizer @require_torch @require_vision def test_unstructured_kwargs_batched(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") qformer_tokenizer = self.get_component("qformer_tokenizer") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) self.skip_processor_without_typed_kwargs(processor) input_str = ["lower newer", "upper older longer string"] image_input = self.prepare_image_inputs() * 2 inputs = processor( text=input_str, images=image_input, return_tensors="pt", size={"height": 214, "width": 214}, padding="longest", max_length=76, ) self.assertEqual(inputs["pixel_values"].shape[2], 214) self.assertEqual(len(inputs["input_ids"][0]), 6) # Override as InstructBlipProcessor has qformer_tokenizer @require_torch @require_vision def test_doubly_passed_kwargs(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") qformer_tokenizer = self.get_component("qformer_tokenizer") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) self.skip_processor_without_typed_kwargs(processor) input_str = ["lower newer"] image_input = self.prepare_image_inputs() with self.assertRaises(ValueError): _ = processor( text=input_str, images=image_input, images_kwargs={"size": {"height": 222, "width": 222}}, size={"height": 214, "width": 214}, ) # Override as InstructBlipProcessor has qformer_tokenizer @require_torch @require_vision def test_structured_kwargs_nested(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") qformer_tokenizer = self.get_component("qformer_tokenizer") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"size": {"height": 214, "width": 214}}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.skip_processor_without_typed_kwargs(processor) self.assertEqual(inputs["pixel_values"].shape[2], 214) self.assertEqual(len(inputs["input_ids"][0]), 76) # Override as InstructBlipProcessor has qformer_tokenizer @require_torch @require_vision def test_structured_kwargs_nested_from_dict(self): if "image_processor" not in self.processor_class.attributes: self.skipTest(f"image_processor attribute not present in {self.processor_class}") image_processor = self.get_component("image_processor") tokenizer = self.get_component("tokenizer") qformer_tokenizer = self.get_component("qformer_tokenizer") processor = self.processor_class( tokenizer=tokenizer, image_processor=image_processor, qformer_tokenizer=qformer_tokenizer ) self.skip_processor_without_typed_kwargs(processor) input_str = "lower newer" image_input = self.prepare_image_inputs() # Define the kwargs for each modality all_kwargs = { "common_kwargs": {"return_tensors": "pt"}, "images_kwargs": {"size": {"height": 214, "width": 214}}, "text_kwargs": {"padding": "max_length", "max_length": 76}, } inputs = processor(text=input_str, images=image_input, **all_kwargs) self.assertEqual(inputs["pixel_values"].shape[2], 214) self.assertEqual(len(inputs["input_ids"][0]), 76)