transformers/docs/source/en/model_doc/fuyu.md
Pablo Montalvo caa0ff0bf1
Add fuyu model (#26911)
* initial commit

* add processor, add fuyu naming

* add draft processor

* fix processor

* remove dropout to fix loading of weights

* add image processing fixes from Pedro

* fix

* fix processor

* add basic processing fuyu test

* add documentation and TODO

* address comments, add tests, add doc

* replace assert with torch asserts

* add Mixins and fix tests

* clean imports

* add model tester, clean imports

* fix embedding test

* add updated tests from pre-release model

* Processor: return input_ids used for inference

* separate processing and model tests

* relax test tolerance for embeddings

* add test for logit comparison

* make sure fuyu image processor is imported in the init

* fix formattingh

* more formatting issues

* and more

* fixups

* remove some stuff

* nits

* update init

* remove the fuyu file

* Update integration test with release model

* Update conversion script.

The projection is not used, as confirmed by the authors.

* improve geenration

* Remove duplicate function

* Trickle down patches to model call

* processing fuyu updates

* remove things

* fix prepare_inputs_for_generation to fix generate()

* remove model_input

* update

* add generation tests

* nits

* draft leverage automodel and autoconfig

* nits

* fix dtype patch

* address comments, update READMEs and doc, include tests

* add working processing test, remove refs to subsequences

* add tests, remove Sequence classification

* processing

* update

* update the conversion script

* more processing cleanup

* safe import

* take out ModelTesterMixin for early release

* more cl;eanup

* more cleanup

* more cleanup

* and more

* register a buffer

* nits

* add postprocessing of generate output

* nits

* updates

* add one working test

* fix test

* make fixup works

* fixup

* Arthur's updates

* nits

* update

* update

* fix processor

* update tests

* passe more fixups

* fix

* nits

* don't import torch

* skip fuyu config for now

* fixup done

* fixup

* update

* oups

* nits

* Use input embeddings

* no buffer

* update

* styling processing fuyu

* fix test

* update licence

* protect torch import

* fixup and update not doctested

* kwargs should be passed

* udpates

* update the impofixuprts in the test

* protect import

* protecting imports

* protect imports in type checking

* add testing decorators

* protect top level import structure

* fix typo

* fix check init

* move requires_backend to functions

* Imports

* Protect types

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre@huggingface.co>
2023-10-18 15:24:11 -07:00

5.1 KiB
Raw Blame History

Fuyu

Overview

The Fuyu model was created by ADEPT, and authored by Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar.

The authors introduced Fuyu-8B, a decoder-only multimodal model based on the classic transformers architecture, with query and key normalization. A linear encoder is added to create multimodal embeddings from image inputs.

By treating image tokens like text tokens and using a special image-newline character, the model knows when an image line ends. Image positional embeddings are removed. This avoids the need for different training phases for various image resolutions. With 8 billion parameters and licensed under Apache, Fuyu-8B is notable for its ability to handle both text and images, its impressive context size of 16K, and its overall performance.

The Fuyu models were trained using bfloat16, but the original inference uses float16 The checkpoints uploaded on the hub use torch_dtype = 'float16' which will be used by the AutoModel API to cast the checkpoints from torch.float32 to torch.float16.

The dtype of the online weights is mostly irrelevant, unless you are using torch_dtype="auto" when initializing a model using model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto"). The reason is that the model will first be downloaded ( using the dtype of the checkpoints online) then it will be cast to the default dtype of torch (becomes torch.float32). Users should specify the torch_dtype they want, and if they don't it will be torch.float32.

Finetuning the model in float16 is not recommended and known to produce nan, as such the model should be fine-tuned in bfloat16.

Tips:

  • To convert the model, you need to clone the original repository using git clone https://github.com/persimmon-ai-labs/adept-inference, then get the checkpoints:
git clone https://github.com/persimmon-ai-labs/adept-inference
wget path/to/fuyu-8b-model-weights.tar
tar -xvf fuyu-8b-model-weights.tar
python src/transformers/models/fuyu/convert_fuyu_weights_to_hf.py  --input_dir /path/to/downloaded/fuyu/weights/ --output_dir /output/path \
    --pt_model_path /path/to/fuyu_8b_release/iter_0001251/mp_rank_00/model_optim_rng.pt
    --ada_lib_path /path/to/adept-inference

For the chat model:

wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_chat_model_release.tar
tar -xvf 8b_base_model_release.tar

Then, model can be loaded via:

from transformers import FuyuConfig, FuyuForCausalLM
model_config = FuyuConfig()
model = FuyuForCausalLM(model_config).from_pretrained('/output/path')

Inputs need to be passed through a specific Processor to have the correct formats. A processor requires an image_processor and a tokenizer. Hence, inputs can be loaded via:

from PIL import Image
from transformers import AutoTokenizer
from transformers.models.fuyu.processing_fuyu import FuyuProcessor
from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor


tokenizer = AutoTokenizer.from_pretrained('adept-hf-collab/fuyu-8b')
image_processor = FuyuImageProcessor()


processor = FuyuProcessor(image_processor=image_processor, tokenizer=tokenizer)
text_prompt = "Generate a coco-style caption.\\n"

bus_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bus.png"
bus_image_pil = Image.open(io.BytesIO(requests.get(bus_image_url).content))
inputs_to_model = processor(text=text_prompt, images=image_pil)


This model was contributed by Molbap. The original code can be found here.

  • Fuyu uses a sentencepiece based tokenizer, with a Unigram model. It supports bytefallback, which is only available in tokenizers==0.14.0 for the fast tokenizer. The LlamaTokenizer is used as it is a standard wrapper around sentencepiece.

  • The authors suggest to use the following prompt for image captioning: f"Generate a coco-style caption.\\n"

FuyuConfig

autodoc FuyuConfig

FuyuForCausalLM

autodoc FuyuForCausalLM - forward

FuyuImageProcessor

autodoc FuyuImageProcessor - call

FuyuProcessor

autodoc FuyuProcessor - call