
* Add jamba arch * apply "make fix-copies" changes * fix link to model in JambaConfig docstring * Add n_ctx in modeling file because repo-consistency wants that * Add jamba to flash attention and sdpa documentation * mamba dt_proj quant fix now works for LoRA as well * override test_left_padding_compatibility and use a more permissive tolerance. left padding numerical difference are accentuated by mamba layers * add jamba to tokenization auto * fix comments of shape (PR #24 in the model page: https://huggingface.co/ai21labs/Jamba-v0.1/discussions/24) * simple PR fixes * remove unnecessary kwargs from JambaAttentionDecoderLayer and JambaMambaDecoderLayer * remove the LoRA hack for the mamba dt_proj bias. It was solved in huggingface/peft#1530 (https://github.com/huggingface/peft/pull/1530) * Add copied comment on JambaMLP (it's the same as MixtralMLP) * remove padding_mask warnings. It's not supported anymore * fix docstring. Float instead of int * A few more minor PR fixes * (1) lowercase names for mamba layernorms (2) remove _apply_inner_layernorms and do it directly in the forward pass * Return None attention weights from mamba layers. Append to all attentions only if not None. * remove some leftover jamba archive lists * Better separation between expert vs non-expert layers. non-expert layers return None as router_logits, and it is not concatenated to all_router_logits returned from JambaModel * no need to take router_logits at config.expert_layer_offset anymore. result.router_logits now holds results only for expert layers * Add Jamba paper on READMEs * (1) rename n_ctx -> max_position_embeddings (2) don't use it in the modeling file since it's not needed (set it as an exception to check_config_attributes) * Add copied from comment * remove the code path for apply_inner_layernorms=False. Jamba always has the inner mamba layernorms * clearer docstring for _convert_to_standard_cache * style fixes * Change calc_logits_for_entire_prompt (bool) to num_logits_to_keep (int). Adapt assisted decoding code tp use it. Also small change in low memory beam search decoding path to support this new int value in model_inputs * rename test so it still overrides what its meant to override * draft * oups * nit * remove more complexe logic * fix names used in config * fix fix fix * style * fix some more failing tests * generate did not init the cache 🙃 * more small nits * typo * config.mamba_expand * config.hidden_size for the intermediate size of the mamba shapes * fix init of pkv with torch.tensor() * empty tensor * fix some init issues * stupid changes required by generate because it does not even support it's own DynamicCache class * more fixes * fix general assisted gen cache_position bug * tests passing * Add offsets and periods as SPECIAL_CASES_TO_ALLOW in check_config_attributes.py * fix reorder_cache to reorder mamba states and override some more functions in HybridMambaAttentionDynamicCache * no need to override test_past_key_values_format() and _check_past_key_values_for_generate() in tests anymore * fix docstrings and typehints for past_key_values * style fixes * fix docs * change typehint due to copy from Mixtral * forgot import * import order * Add configuration_jamba and modeling_jamba to not_doctested because the model is too big to download (in docstring of JambaForCausalLM.forward) * Add integration test with tiny tandom Jamba model on hub * fix flash attention cache shapes * bring back forgotten hidden states * rename HybridMambaAttentionDynamicCache.seqlen_offset to has_previous_state (and make bool) and bugfix - it should be set to True after a finished forward pass of the entire model * align integration test after modeling fixes * bugfix - mamba can use precomputed states only of forward pass is on a single token * bugfix - mamba can use precomputed states only if they match the batch size * typo * remove making _prepare_4d_causal_attention_mask a leaf function * stop using past_seq_len.get_seq_length(). Use cache positions instead. Adjust test (test_decoder_model_past_with_large_inputs) accordingly --------- Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com> Co-authored-by: Joao Gante <joao@huggingface.co>
6.2 KiB
Jamba
Overview
Jamba is a state-of-the-art, hybrid SSM-Transformer LLM. It is the first production-scale Mamba implementation, which opens up interesting research and application opportunities. While this initial experimentation shows encouraging gains, we expect these to be further enhanced with future optimizations and explorations.
For full details of this model please read the release blog post.
Model Details
Jamba is a pretrained, mixture-of-experts (MoE) generative text model, with 12B active parameters and an overall of 52B parameters across all experts. It supports a 256K context length, and can fit up to 140K tokens on a single 80GB GPU.
As depicted in the diagram below, Jamba's architecture features a blocks-and-layers approach that allows Jamba to successfully integrate Transformer and Mamba architectures altogether. Each Jamba block contains either an attention or a Mamba layer, followed by a multi-layer perceptron (MLP), producing an overall ratio of one Transformer layer out of every eight total layers.
Usage
Presequities
Jamba requires you use transformers
version 4.39.0 or higher:
pip install transformers>=4.39.0
In order to run optimized Mamba implementations, you first need to install mamba-ssm
and causal-conv1d
:
pip install mamba-ssm causal-conv1d>=1.2.0
You also have to have the model on a CUDA device.
You can run the model not using the optimized Mamba kernels, but it is not recommended as it will result in significantly lower latencies. In order to do that, you'll need to specify use_mamba_kernels=False
when loading the model.
Run the model
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
input_ids = tokenizer("In the recent Super Bowl LVIII,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
print(tokenizer.batch_decode(outputs))
# ["<|startoftext|>In the recent Super Bowl LVIII, the Kansas City Chiefs emerged victorious, defeating the San Francisco 49ers in a thrilling overtime showdown. The game was a nail-biter, with both teams showcasing their skills and determination.\n\nThe Chiefs, led by their star quarterback Patrick Mahomes, displayed their offensive prowess, while the 49ers, led by their strong defense, put up a tough fight. The game went into overtime, with the Chiefs ultimately securing the win with a touchdown.\n\nThe victory marked the Chiefs' second Super Bowl win in four years, solidifying their status as one of the top teams in the NFL. The game was a testament to the skill and talent of both teams, and a thrilling end to the NFL season.\n\nThe Super Bowl is not just about the game itself, but also about the halftime show and the commercials. This year's halftime show featured a star-studded lineup, including Usher, Alicia Keys, and Lil Jon. The show was a spectacle of music and dance, with the performers delivering an energetic and entertaining performance.\n"]
Loading the model in half precision
The published checkpoint is saved in BF16. In order to load it into RAM in BF16/FP16, you need to specify torch_dtype
:
from transformers import AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1", torch_dtype=torch.bfloat16)
# you can also use torch_dtype=torch.float16
When using half precision, you can enable the FlashAttention2 implementation of the Attention blocks. In order to use it, you also need the model on a CUDA device. Since in this precision the model is to big to fit on a single 80GB GPU, you'll also need to parallelize it using accelerate:
from transformers import AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto")
Load the model in 8-bit
Using 8-bit precision, it is possible to fit up to 140K sequence lengths on a single 80GB GPU. You can easily quantize the model to 8-bit using bitsandbytes. In order to not degrade model quality, we recommend to exclude the Mamba blocks from the quantization:
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["mamba"])
model = AutoModelForCausalLM.from_pretrained(
"ai21labs/Jamba-v0.1", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", quantization_config=quantization_config
)
JambaConfig
autodoc JambaConfig
JambaModel
autodoc JambaModel - forward
JambaForCausalLM
autodoc JambaForCausalLM - forward
JambaForSequenceClassification
autodoc transformers.JambaForSequenceClassification - forward