
* inital commit * update * update conversion checkpoint * update conversion script * nits * some fixes * nits * merge * fix permute * nits * fix * nits * nits * nits * fix rope * fix both rope * nites * style * make sure flax works * fix flax init code * fix foward * nits * print flax generation out * current code * nits * SIIIIIIIIIIIIIIIIIII * update * add new tokenizer * correct fast tokenizer * fix conversion * more comments * fix modeling and conversion * nits and nits * nits testing * add some tokenization tests * add some edge cases * add slow tests and fix them * fixup * fix copies for modeling * fix copies * add 7B slow tests * fix * fix * fix tests * make tokenizer cis go green * styling * last tokenizer nits * update jax tests * fix flax for 7b * add jit testing 🤗 * cleanups * isolated nit, inv_freq for rotary_emb.inv_freq * propagate to jax * Apply suggestions from code review Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> * adjust test * fix conversion script * change name * correct file names * update conversion script * Fix bos and eos token ids in the model configuration (#3) * update modelling * update conversion script * add static cache for gemma * fix sdpa generate * fix batched * multiple fixes * fix FA2 * final fix * Rename a few missing strings and filenames (#4) * merge with upstream main * fix copies * fix copies * fix fixup * fix fixup * fix * fix * final tests * fix fx gemma tests * fix fx bf16/fp16 tests * update slow fx tests * fx slow tests: one logits, one generation * move jit test standalone * Apply suggestions from code review * nits * tokenizer updates * more tokenization updates: custom GemmaSentencepieceExtrator * style * Update src/transformers/cache_utils.py * Update src/transformers/models/gemma/__init__.py * Update tests/models/gemma/test_modeling_flax_gemma.py * small nits * style * update tokenization test * fix the rotary embedding * with style * fix slow tests * WARNING this commit might be very important for precisions * Update tests/models/gemma/test_modeling_flax_gemma.py * Update src/transformers/models/gemma/configuration_gemma.py Co-authored-by: Lysandre Debut <hi@lysand.re> * Update src/transformers/models/gemma/modeling_flax_gemma.py Co-authored-by: Lysandre Debut <hi@lysand.re> * small nits here and there! * forgotten nit * remove on the fly computation of inv_freq * revert previous change, let's be safe and for now re-compute freq cis to make sure it's in float * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_flax_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_tokenization_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_tokenization_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_tokenization_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_tokenization_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update tests/models/gemma/test_modeling_gemma.py Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * nit conversion script link * fix some tests * add not doctest and pr doctest * repo consistency * fix last CIs 🚀 * update all readmes --------- Co-authored-by: younesbelkada <younesbelkada@gmail.com> Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> Co-authored-by: Pedro Cuenca <pedro@huggingface.co> Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: sanchit-gandhi <sanchit@huggingface.co> Co-authored-by: Lysandre Debut <hi@lysand.re>
2.6 KiB
Gemma
Overview
The Gemma model was proposed in Gemma: Open Models Based on Gemini Technology and Research by Gemma Team, Google. Gemma models are trained on 6T tokens, and released with 2 versions, 2b and 7b.
The abstract from the paper is the following:
This work introduces Gemma, a new family of open language models demonstrating strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of our model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations
Tips:
- The original checkpoints can be converted using the conversion script
src/transformers/models/gemma/convert_gemma_weights_to_hf.py
This model was contributed by Arthur Zucker, Younes Belkada, Sanchit Gandhi, Pedro Cuenca.
GemmaConfig
autodoc GemmaConfig
GemmaTokenizer
autodoc GemmaTokenizer
GemmaTokenizerFast
autodoc GemmaTokenizerFast
GemmaModel
autodoc GemmaModel - forward
GemmaForCausalLM
autodoc GemmaForCausalLM - forward
GemmaForSequenceClassification
autodoc GemmaForSequenceClassification - forward
FlaxGemmaModel
autodoc FlaxGemmaModel - call
FlaxGemmaForCausalLM
autodoc FlaxGemmaForCausalLM - call