transformers/docs/source/en/model_doc/clvp.md
Susnato Dhar 7e9f10ac94
Add CLVP (#24745)
* init commit

* attention arch done except rotary emb

* rotary emb done

* text encoder working

* outputs matching

* arch first pass done

* make commands done, tests and docs remaining

* all tests passed, only docs remaining

* docs done

* doc-builder fix

* convert script removed(not relevant)

* minor comments done

* added ckpt conversion script

* tokenizer done

* very minor fix of index.md 2

* mostly make fixup related

* all done except fe and rotary emb

* very small change

* removed unidecode dependency

* style changes

* tokenizer removed require_backends

* added require_inflect to tokenizer tests

* removed VOCAB_FILES in tokenizer test

* inflect dependency removed

* added rotary pos emb cache and simplified the apply method

* style

* little doc change

* more comments

* feature extractor added

* added processor

* auto-regressive config added

* added CLVPConditioningEncoder

* comments done except the test one

* weights added successfull(NOT tested)

* tokenizer fix with numbers

* generate outputs matching

* almost tests passing Integ tests not written

* Integ tests added

* major CUDA error fixed

* docs done

* rebase and multiple fixes

* fixed rebase overwrites

* generate code simplified and tests for AutoRegressive model added

* minor changes

* refectored gpt2 code in clvp file

* weights done and all code refactored

* mostly done except the fast_tokenizer

* doc test fix

* config file's doc fixes

* more config fix

* more comments

* tokenizer comments mostly done

* modeling file mostly refactored and can load modules

* ClvpEncoder tested

* ClvpDecoder, ClvpModel and ClvpForCausalLM tested

* integration and all tests passed

* more fixes

* docs almost done

* ckpt conversion refectored

* style and some failing tests fix

* comments

* temporary output fix but test_assisted_decoding_matches_greedy_search test fails

* majority changes done

* use_cache outputs same now! Along with the asisted_greedy_decoding test fix

* more comments

* more comments

* prepare_inputs_for_generation fixed and _prepare_model_inputs added

* style fix

* clvp.md change

* moved clvpconditionalencoder norms

* add model to new index

* added tokenizer input_ids_with_special_tokens

* small fix

* config mostly done

* added config-tester and changed conversion script

* more comments

* comments

* style fix

* some comments

* tokenizer changed back to prev state

* small commnets

* added output hidden states for the main model

* style fix

* comments

* small change

* revert small change

* .

* Update clvp.md

* Update test_modeling_clvp.py

* :)

* some minor change

* new fixes

* remove to_dict from FE
2023-11-10 13:49:10 +00:00

127 lines
4.6 KiB
Markdown

<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# CLVP
## Overview
The CLVP (Contrastive Language-Voice Pretrained Transformer) model was proposed in [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker.
The abstract from the paper is the following:
*In recent years, the field of image generation has been revolutionized by the application of autoregressive transformers and DDPMs. These approaches model the process of image generation as a step-wise probabilistic processes and leverage large amounts of compute and data to learn the image distribution. This methodology of improving performance need not be confined to images. This paper describes a way to apply advances in the image generative domain to speech synthesis. The result is TorToise - an expressive, multi-voice text-to-speech system.*
This model was contributed by [Susnato Dhar](https://huggingface.co/susnato).
The original code can be found [here](https://github.com/neonbjb/tortoise-tts).
## Usage tips
1. CLVP is an integral part of the Tortoise TTS model.
2. CLVP can be used to compare different generated speech candidates with the provided text, and the best speech tokens are forwarded to the diffusion model.
3. The use of the [`ClvpModelForConditionalGeneration.generate()`] method is strongly recommended for tortoise usage.
4. Note that the CLVP model expects the audio to be sampled at 22.05 kHz contrary to other audio models which expects 16 kHz.
## Brief Explanation:
- The [`ClvpTokenizer`] tokenizes the text input, and the [`ClvpFeatureExtractor`] extracts the log mel-spectrogram from the desired audio.
- [`ClvpConditioningEncoder`] takes those text tokens and audio representations and converts them into embeddings conditioned on the text and audio.
- The [`ClvpForCausalLM`] uses those embeddings to generate multiple speech candidates.
- Each speech candidate is passed through the speech encoder ([`ClvpEncoder`]) which converts them into a vector representation, and the text encoder ([`ClvpEncoder`]) converts the text tokens into the same latent space.
- At the end, we compare each speech vector with the text vector to see which speech vector is most similar to the text vector.
- [`ClvpModelForConditionalGeneration.generate()`] compresses all of the logic described above into a single method.
Example :
```python
>>> import datasets
>>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration
>>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library).
>>> text = "This is an example text."
>>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
>>> sample = ds[0]["audio"]
>>> # Define processor and model.
>>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
>>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")
>>> # Generate processor output and model output.
>>> processor_output = processor(raw_speech=sample["array"], sampling_rate=sample["sampling_rate"], text=text, return_tensors="pt")
>>> generated_output = model.generate(**processor_output)
```
## ClvpConfig
[[autodoc]] ClvpConfig
- from_sub_model_configs
## ClvpEncoderConfig
[[autodoc]] ClvpEncoderConfig
## ClvpDecoderConfig
[[autodoc]] ClvpDecoderConfig
## ClvpTokenizer
[[autodoc]] ClvpTokenizer
- save_vocabulary
## ClvpFeatureExtractor
[[autodoc]] ClvpFeatureExtractor
- __call__
## ClvpProcessor
[[autodoc]] ClvpProcessor
- __call__
- decode
- batch_decode
## ClvpModelForConditionalGeneration
[[autodoc]] ClvpModelForConditionalGeneration
- forward
- generate
- get_text_features
- get_speech_features
## ClvpForCausalLM
[[autodoc]] ClvpForCausalLM
## ClvpModel
[[autodoc]] ClvpModel
## ClvpEncoder
[[autodoc]] ClvpEncoder
## ClvpDecoder
[[autodoc]] ClvpDecoder